ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ФИЗИКО-ТЕХНИЧЕСКИХ И РАДИОТЕХНИЧЕСКИХ ИЗМЕРЕНИЙ» Дальневосточный филиал (Дальневосточный филиал ФГУП «ВНИИФТРИ»)

ОТЧЕТ

о пилотных сличениях КООМЕТ № 706/RU/16 «Сличение результатов измерений скорости распространения продольных ультразвуковых волн в твердых средах»

Окончательный отчет

Хабаровск 2021

СОДЕРЖАНИЕ

1 ВВЕДЕНИЕ

Целью пилотных сличений КООМЕТ является опробование методик измерения и транспортируемых эталонов, анализ заявленных оценок составляющих неопределенности, а также проверка воспроизводимости результатов измерений в НМИ-участниках сличений [1].

В пилотных сличениях КООМЕТ № 706/RU/16 проведены сличения результатов измерений скорости распространения продольных ультразвуковых волн в твердых средах с использованием шести эталонов, в которых реализованы различные методы возбуждения и регистрации ультразвука (бесконтактные оптический и емкостный методы, пьезоэлектрический иммерсионный метод) и различные методы измерений скорости распространения продольных ультразвуковых волн в твердых средах (импульсный, резонансный, метод прохождения). Измерения впервые проведены на 3-х частотах продольных ультразвуковых волн: 2,25-2,5; 5 и 10 МГц с применением шести транспортируемых эталонов сравнения – мер скорости.

В качестве транспортируемых эталонов сравнения выбраны шесть образцов (меры скорости), изготовленных из кварцевого и оптического стекла и стали 40X13 толщиной от 10 до 40 мм. Образцы из стекол обеспечивают высокую степень однородности материала по сечению образца, отсутствие зернистости, минимальное значение коэффициента затухания и дисперсии скорости. Образцы из стали подвергнуты термомеханической обработке для обеспечения достаточной степени однородности и мелкозернистости структуры. Образцы принадлежат Дальневосточному филиалу ФГУП «ВНИИФТРИ».

Сличения организованы Техническим комитетом ТК1.2 КООМЕТ «Акустика, ультразвук и вибрация». Решение о проведении пилотных сличений в области измерений скорости распространения продольных ультразвуковых волн в твердых средах было принято на 10-м заседании Технического комитета ТК 1.2 КООМЕТ, состоявшемся в ФГУП «ВНИИФТРИ» в сентябре 2015 г., Менделеево, Россия.

Было принято, что пилотной лабораторией сличений выступит Дальневосточный филиал ФГУП «ВНИИФТРИ».

В настоящем отчете о пилотных сличениях КООМЕТ, тема № 706/RU/16 «Сличение результатов измерений скорости распространения продольных ультразвуковых волн в твердых средах», представлены результаты измерений участников пилотных сличений, бюджеты неопределенностей и результаты оценки данных сличения.

2 УЧАСТНИКИ СЛИЧЕНИЯ

В настоящих пилотных сличениях приняли участие следующие национальные метрологические институты (НМИ):

• Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт физико-технических и радиотехнических измерений» (ФГУП «ВНИИФТРИ»), Дальневосточный филиал, Россия;

• Республиканское унитарное предприятие «Белорусский государственный институт метрологии» (РУП «БелГИМ»), Беларусь;

• Государственное предприятие «Всеукраинский государственный центр стандартизации, метрологии, сертификации и защиты прав потребителей» (ГП «Укрметртестстандарт»), Украина;

• Государственное предприятие «Днепропетровский региональный государственный научно-технический центр стандартизации, метрологии и сертификации» (ГП «Днепрстандартметрология»), Украина;

• Национальный институт метрологии (NIM), Китай.

Подробная информация об участниках сличения представлена в Приложении F.

3 ЭТАЛОНЫ

3.1 Дальневосточный филиал ФГУП «ВНИИФТРИ»

1) Государственный первичный эталон единиц скоростей распространения и коэффициента затухания ультразвуковых волн в твердых средах ГЭТ 189-2014:

- бесконтактные оптические (лазерные) методы возбуждения и регистрации ультразвука;

- эхо-импульсный метод измерений скорости продольных ультразвуковых волн.

2) Установка для комплексных измерений акустических параметров твердых сред ИЗУ-1 №01:

- бесконтактные емкостные методы возбуждения и регистрации ультразвука;

- эхо-импульсный и резонансный методы измерений скорости продольных ультразвуковых волн.

3.2 БелГИМ

Установка для измерения скорости продольных ультразвуковых волн УИСУ-3 № 01:

- иммерсионный пьезоэлектрический метод возбуждения и регистрации ультразвука;

- эхо-импульсный метод измерений скорости продольных ультразвуковых волн.

3.3 ГП «Укрметртестстандарт»

Установка для измерения скорости продольных ультразвуковых волн УИСУ-01 № 3:

- иммерсионный пьезоэлектрический метод возбуждения и регистрации ультразвука;

- импульсный метод измерений скорости продольных ультразвуковых волн.

3.4 ГП «Днепрстандартметрология»,

Установка для измерения скорости продольных ультразвуковых волн УИСУ-01 № 2: - иммерсионный пьезоэлектрический метод возбуждения и регистрации ультразвука; - импульсный метод измерений скорости продольных ультразвуковых волн.

3.5 НИМ

Национальный эталон для измерения ультразвуковых свойств материалов [2011] 237:

- иммерсионный пьезоэлектрический метод возбуждения и регистрации ультразвука;

- импульсный метод прохождения (through-transmission substitution technique) для измерений скорости продольных ультразвуковых волн.

4 ТРАНСПОРТИРУЕМЫЕ ЭТАЛОНЫ СРАВНЕНИЯ

Для сличения в качестве транспортируемых эталонов сравнения выбраны шесть образцов (меры скорости), изготовленных из кварцевого и оптического стекла и стали 40Х13 толщиной от 10 до 40 мм. Образцы из стекол обеспечивают высокую степень однородности материала по сечению образца, отсутствие зернистости, минимальное значение коэффициента затухания и дисперсии скорости. Образцы из стали подвергнуты термомеханической обработке для обеспечения достаточной степени однородности и мелкозернистости структуры. Образцы принадлежат Дальневосточному филиалу ФГУП «ВНИИФТРИ».

Основные сведения об образцах приведены в таблице 4.1.

Обозначение	Материал образца	Геометричес	кие размеры	Примечание
	Помер образца	Номинальная толщина, мм	Поперечные размеры, мм	
Образец № 1	Кварцевое стекло КВ 10№05	9,91	100×100	Двустороннее зеркальное покрытие
Образец № 2	Кварцевое стекло КВ 20№05	19,95	100×100	Двустороннее зеркальное покрытие
Образец № 3	Кварцевое стекло КУ-1 40№1	40,05	Ø 140	Двустороннее зеркальное покрытие
Образец № 4	Стекло БК8 20№1	20,05	Ø 100	Двустороннее зеркальное покрытие
Образец № 5	Сталь 40Х13 10№2	10,84	Ø 50	Одна поверхность имеет зеркальную полировку
Образец № 6	Сталь 40Х13 20№1	21,185	Ø 90	Одна поверхность имеет зеркальную полировку

Таблица 4.1 – Характеристики эталонов сравнения

К образцам, используемым в сличениях, предъявляются следующие специальные требования:

- диапазон толщины образцов (1÷5)·10⁻² м;
- геометрические размеры образцов *D*/*d* ≥ 3, где *D* диаметр (поперечные размеры) образца, *d* толщина образца;
- отклонение от параллельности рабочих поверхностей образцов в осесимметричной зоне диаметром 50 мм не более 0,005 мм;
- отклонение от плоскостности рабочих поверхностей образцов в осесимметричной зоне диаметром 50 мм не более 0,0005 мм;
- шероховатость рабочих поверхностей образцов Rz не более 0,16 мкм;
- коэффициент затухания продольных УЗ волн в диапазоне частот до 25 МГц не более 100 дБ/м;

- дисперсия скорости продольных УЗ волн в образцах из стекол в диапазоне частот до 25 МГц – не более 0,02 %;
- образцы из стекол должны иметь зеркальное алюминиевое покрытие.

5 ГРАФИК СЛИЧЕНИЙ И ТРАНСПОРТИРОВКА

Учитывая стабильность характеристик эталонов сравнения, в данных сличениях использована смешенная схема сличений. График проведения измерений участниками сличений приведен в таблице 5.1.

	1 1	
N⁰	НМИ	Период проведения измерений
1	ДВФ «ВНИИФТРИ»	с 1 сентября по 1 ноября 2018
2	БелГИМ	с 15 ноября 2018 г. по 15 января 2019
3	ГП «Укрметртестстандарт»	с 1 февраля по 1 апреля 2019.
4	ГП «Днепрстандартметрология»	с 15 апреля по 15 июня 2019.
5	НИМ	с 1 октября по 1 декабря 2019
6	ДВФ «ВНИИФТРИ»	с 15 декабря 2019 г. по 15 февраля 2020

Таблица 5.1 – График сличений

Транспортировка образцов осуществлялась транспортными компаниями. Образцы имели индивидуальную упаковку, которая обеспечивала их сохранность, и были помещены в закрытый ящик.

6 МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

Каждая лаборатория определяла методом косвенных измерений значение скорости распространения продольных ультразвуковых волн в каждом из образцов. Измерения были проведены на частотах 2,25-2,5; 5 и 10 МГц для образцов номинальной толщиной 20 и 40 мм и на частотах 5 и 10 МГц для образцов номинальной толщиной 10 мм.

Для измерений толщины образцов использовались средства линейных измерений, для которых предел допускаемой абсолютной погрешности или расширенная неопределенность измерений в диапазоне измерений от 10 до 50 мм не более 2 мкм. Измерения толщины образцов производились в 10 точках поверхности образца.

Измерения скорости (времени) распространения продольных ультразвуковых волн выполнялись в соответствии с технической документацией на используемые при измерениях эталоны. Количество измерений (объем выборки) составляло не менее 10. Для установок иммерсионного типа при импульсном методе измерений номера используемых ультразвуковых импульсов, отсчетных полуволн, отсчетных точек в полуволнах выбирались участниками сличений самостоятельно с учетом требований методики измерений. На установке ИЗУ-1 при использовании резонансного метода измерений определялась частота максимума акустической спектральной линии, наиболее близкой к частотам 2,5; 5 и 10 МГц.

Измерения проводились при температуре окружающего воздуха, образца или жидкости в иммерсионной ванне (20±2) °C. Значение температуры образца или иммерсионной жидкости измерялось с погрешностью (неопределенностью) 0,1-0,13 °C.

Перед проведением измерений образец выдерживали при температуре окружающей среды не менее 30 минут (образец толщиной 40 мм – не менее 1 часа). При проведении измерений контролировалась температура образца (иммерсионной жидкости).

Результаты измерений скорости распространения продольных ультразвуковых волн приведены к температуре 20 °C с учетом температурного коэффициента скорости (ТКС) для материала меры *k*_t путем введения поправки по формуле:

$$\tilde{C}_{20^{\circ}C} = \tilde{C}_t + (20, 0 - t^{\circ}C)k_t$$
,

где

t – температура образца (иммерсионной жидкости) при проведении измерений;

k, – температурный коэффициент скорости.

Значения ТКС каждого из образцов и неопределенность ТКС предоставлены пилотлабораторией и приведены в таблице 7.1.2.

Дифракционная поправка (за исключением установки ИЗУ-1) не рассчитывалась. Оцененное максимальное значение этой поправки для данных условий измерений интерпретируется вкладом в суммарную неопределенность с соответствующими границами.

7 РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ, ПРЕДСТАВЛЕННЫЕ УЧАСТНИКАМИ СЛИЧЕНИЙ

7.1 Результаты измерений, представленные Дальневосточным филиалом ФГУП «ВНИИФТРИ», Россия (ГЭТ 189-2014)

7.1.1 Наименование, тип и номер эталонов, используемых для измерения толщины образца и скорости распространения продольных ультразвуковых волн

Для измерений толщины образцов применялся длиномер вертикальный ИЗВ-3 №760069. Предел допускаемой абсолютной погрешности длиномера (0,0012+*d*/120000) мм, где *d* – измеряемая толщина в мм.

Для измерений скорости (времени) распространения продольных ультразвуковых волн применялся государственный первичный эталон единиц скоростей распространения и коэффициента затухания ультразвуковых волн в твердых средах ГЭТ 189-2014.

7.1.2 Условия измерений

Температура окружающего воздуха (20 ± 1) °С.

Температура образцов (20 ± 0.5) °С.

Для измерений температуры применялся термоэлектрический измеритель TH-485. Предел допускаемой абсолютной погрешности измерений 0,1 °C.

7.1.3 Описание эталона, методика выполнения измерений скорости (времени) распространения продольных ультразвуковых волн

В эталоне применяются бесконтактные широкополосные оптические (лазерные) методы возбуждения и регистрации ультразвука и эхо-импульсный метод измерения скорости распространения продольных ультразвуковых волн. Диапазон частот продольных ультразвуковых волн (0,5 ÷ 25) МГц. Схема эталонной установки приведена на рис. 7.1.1.

Рис. 7.1.1 Схема эталонной установки.

Термооптическое возбуждение коротких (длительность на полувысоте 25-30 нс) акустических импульсов продольных волн в образце производится с помощью

твердотельного импульсного лазера с модуляцией добротности. Лазерное излучение с помощью линзы фокусируется на поверхность образца, где формируется «точечный» оптико-акустический источник. Оптическая система позволяет фокусировать лазерное излучение на образцы разной толщины. Регистрация акустических сигналов производится лазерным интерферометрическим приемником с полосой частот (0,5÷80) МГц. Приемник расположен соосно с оптико-акустическим источником на противоположной, зеркальной поверхности образца, которая служит одним из зеркал интерферометра. Диаметр зон возбуждения и приема ультразвуковых сигналов составляет ~0,5 мм, что значительно снижает дифракционные эффекты. Сигналы с выхода фотоприемника усиливаются с помощью широкополосного усилителя и регистрируются цифровым запоминающим осциллографом (ЦЗО) LeCroy WaveSurfer 422. Типичная осциллограмма акустических импульсов приведена на рис. 7.1.2а.

Измерение временных интервалов производилось между 1-м (пришедшим) и 2-м (переотраженным) ультразвуковыми импульсами методом совмещения сигналов на экране ЦЗО. Методика измерения временного интервала между двумя сигналами разной амплитуды в однократном режиме регистрации заключается в воспроизведении двух копий записанной осциллограммы, совмещении на экране осциллографа требуемых импульсов, выравнивании их амплитуд (рис. 7.1.2б) и определении временной задержки сигналов относительно момента запуска осциллографа. Величина временного сдвига импульсов измеряется с дискретностью 0,2 нс.

Рис. 7.1.2. Осциллограммы акустических импульсов. Образец №2. а) акустические сигналы 1,2,3 продольных УЗ волн (2 мкс/дел). б) совмещение акустических импульсов 1,2,3 на экране осциллографа (20 нс/дел).

Измерения временных интервалов проводятся в пяти точках поверхности образца: в центре и в четырех точках, расположенных через 90° на расстоянии 10 мм от центра. Это обусловлено возможной неоднородностью материала образца. Число измерений в каждой точке $n_T = 17$. При измерениях контролируется температура образца с точностью 0,1 °C.

Скорость распространения продольных ультразвуковых волн C_L в каждой *i*-й точке образца рассчитывается по формуле

$$C_{L,i} = \frac{2(N-1)d}{T_i} \,,$$

где d – толщина образца; T_i – время распространения продольных ультразвуковых волн; N – номер переотраженного импульса.

В сличениях N = 2.

Измерения толщины образцов *d* производились с использованием вертикального длиномера ИЗВ-3 в 10 точках: в центре образца и девяти точках, равномерно расположенных на границе осесимметричной зоны диаметром 30 мм.

7.1.4 Модель измерений

Скорость распространения продольных ультразвуковых волн C_L в образце, приведенная к температуре 20 °C, определяется в соответствии со следующей моделью измерений

$$C_L = \frac{2(N-1)d}{\overline{T}} + \Delta C_t + \Delta C_{dif} + \Delta C_{dis} = \frac{2(N-1)d}{\overline{T}} + (20-t)k_t + \Delta C_{dif} + \Delta C_{dis},$$

где d – толщина образца; \overline{T} – действительное значение времени распространения продольных ультразвуковых волн; ΔC_t – поправка на температурную зависимость скорости; ΔC_{dif} – дифракционная поправка; ΔC_{dis} – поправка на дисперсию скорости; t – температура образца (°С); k_t – температурный коэффициент скорости.

7.1.5 Определение составляющих суммарной стандартной неопределенности измерений и поправок

7.1.5.1 Оценка стандартной неопределенности по типу А

Распределение вероятности принимается нормальным.

Среднее арифметическое значение результата измерения толщины образца *d* определяется по формуле

$$\overline{d} = \frac{1}{n_d} \sum_{j=1}^{n_d} d_j ,$$

где d_j – результат измерения толщины образца в *j*-й точке поверхности; n_d – число измерений толщины образца (n_d =10).

Стандартная неопределенность измерений толщины образца, оцениваемая по типу А, вычисляется по формуле

$$u_A(\bar{d}) = \sqrt{\frac{\sum_{j=1}^{n_d} (d_j - \bar{d})^2}{n_d (n_d - 1)}} .$$

Среднее арифметическое значение результата измерения времени распространения продольных ультразвуковых волн $\overline{T_i}$ в *i*-й точке образца определяется по формуле

$$\overline{T}_i = \frac{1}{n_T} \sum_{j=1}^{n_T} T_{ij} ,$$

где T_{ij} – результат *j*-го измерения времени распространения продольных ультразвуковых волн в *i*-й точке образца; n_T – число измерений (n_T =17).

Стандартная неопределенность измерений времени распространения продольных ультразвуковых волн в *i*-й точке образца, оцениваемая по типу A, вычисляется по формуле

$$u_{A}(\overline{T_{i}}) = \sqrt{\frac{\sum_{j=1}^{n_{T}} (T_{ij} - \overline{T_{i}})^{2}}{n_{T}(n_{T} - 1)}} .$$

Действительное значение времени распространения продольных ультразвуковых волн \overline{T} в образце определяется по результатам измерений в 5 точках образца как среднее взвешенное по формуле

$$\overline{T} = \frac{\sum_{i=1}^{5} \overline{T_i} \frac{1}{u_A^2(\overline{T_i})}}{\sum_{i=1}^{5} \frac{1}{u_A^2(\overline{T_i})}}.$$

Стандартная неопределенность измерений \overline{T} , оцениваемая по типу A, вычисляется по формуле

$$u_A(\overline{T}) = \frac{1}{\sqrt{\sum_{i=1}^5 \frac{1}{u_A^2(\overline{T_i})}}}$$

7.1.5.2 Оценка стандартной неопределенности по типу В

Для стандартной неопределенности измерений, оцениваемой по типу В, принято, что все входные параметры x_i заданы симметричными границами $a(x_i)$. Распределение вероятности внутри границ – равномерное (прямоугольное).

Стандартная неопределенность по типу В $u_B(x_i)$ вычисляется по формуле

$$u_B(x_i) = \frac{a(x_i)}{\sqrt{3}} \, .$$

Источники стандартной неопределенности по типу В, обозначения и формулы для определения границ $a(x_i)$ приведены в таблице 7.1.1.

Для средств измерений (длиномер ИЗВ-3, осциллограф WaveSurfer422 и измеритель температуры TH-485) в качестве границ приняты пределы абсолютной погрешности измерений параметров, указанные в Паспорте или Руководстве по эксплуатации.

Неопределенность временной привязки к ультразвуковым импульсам связана с неточностью совмещения передних фронтов и дискретностью отсчета генератора задержки ЦЗО WaveSurfer 422 на применяемой развертке.

Несоосность точек возбуждения и регистрации ультразвуковых сигналов увеличивает расстояние, пройденное импульсами, в сравнении с толщиной образца. Применяемые методы обеспечивают несоосность ΔX не более 0,2 мм.

Непараллельность поверхностей образца φ приводит к изменению длины пути акустических импульсов. Относительное значение неопределенности при $\varphi \leq 10^{-4}$ рад составляет порядка 10^{-6} , т.е. величину незначительную.

Дифракционные явления приводят к изменению длительности переднего фронта акустического импульса с расстоянием и, соответственно, к изменению временного интервала между ультразвуковыми импульсами. Точечный метод генерации акустических сигналов, при котором возбуждаются почти сферические волны, существенно снижает вклад дифракционных явлений в суммарную неопределенность.

Частотная дисперсия скорости продольных ультразвуковых волн в материале образца приводит к дополнительной неопределенности временных измерений для широкополосных импульсных сигналов. В стеклах относительное значение дисперсии δC_{dis} оценивается величиной менее 1.10⁻⁴, в стали 5.10⁻⁴.

Таблица ′	7.1.1
-----------	-------

Источник стандартной неопределенности	$u_B(x_i)$	Границы $a(x_i)$
Неточность измерителя толщины образца – длиномера ИЗВ-3 (где <i>d</i> – в мм)	$u_B(\Delta d)$	$a(\Delta d) = 0,0012 + \frac{d}{120000}$
Неточность измерителя временных интервалов – цифрового осциллографа WaveSurfer 422 (где <i>T</i> – в секундах)	$u_B(\Delta T)$	$a(\Delta T) = 2 \cdot 10^{-11} + 10^{-5}T$
Неточность временной привязки к ультразвуковым импульсам	$u_B(\Delta\tau)$	$a(\Delta \tau) = \Delta \tau$
Несоосность точек возбуждения и регистрации	$u_B(\Delta X)$	$a(\Delta X) = \frac{(\Delta X)^2}{2(2N-1)d}$
Непараллельность рабочих поверхностей образца	$u_B(\varphi)$	$a(\varphi) = 3\varphi^2 d$
Дифракционные эффекты	$u_B(\Delta T_{dif})$	$a(\Delta T_{dif}) = \frac{(N-1)r^2T}{2(2N-1)d^2}$
Дисперсия скорости	$u_B(\Delta C_{dis})$	$a(\Delta C_{dis}) = C_L \delta C_{dis}$
Неточность измерения температуры образца	$u_B(t)$	$a(t) = \Delta t$
Неточность температурного коэффициента скорости	$\overline{u_B(k_t)}$	$a(k_t) = U(k_t)$

Обозначения в таблице:

 Δd – границы погрешности измерителя толщины; ΔT – границы погрешности измерителя временных интервалов; $\Delta \tau$ – границы погрешности временной привязки к импульсам; ΔX – несоосность точек возбуждения и регистрации; φ – угол, характеризующий непараллельность поверхностей образца; ΔT_{dif} – дифракционное изменение временного интервала между ультразвуковыми импульсами; r – радиус оптико-акустического источника; δC_{dis} – оценка относительной дисперсии скорости продольных волн в заданном диапазоне частот; Δt – границы погрешности измерителя температуры; $U(k_t)$ – расширенная неопределенность измерений температурного коэффициента скорости.

При численном оценивании неопределенностей измерений принято:

 $\Delta \tau \leq 0,4$ HC; $\Delta X \leq 0,2$ MM; r = 0,25 MM; N=2; $\Delta t = 0,1$ °C; $|20-t| \leq 0,5$ °C; $U(k_t) = 0,1$ M/(C·°C).

Значения поправок на дифракционные эффекты ΔC_{dif} и дисперсию скорости ΔC_{dis} приняты равными нулю. Влияние эффектов дифракции и дисперсии интерпретируется соответствующим вкладом в суммарную неопределенность.

Измерения проведены при температуре образцов в диапазоне (20-20,8) °С. При отклонении температуры менее 0,5 °С от 20 °С поправка принимается равной нулю с соответствующей неопределенностью измерений. При отклонении температуры образца

более 0,5 °C вводится поправка на температурную зависимость скорости ΔC_t , которая определяется по формуле

$$\Delta C_t = k_t (20 - t),$$

где *t* – температура образца; *k*_t – температурный коэффициент скорости (ТКС).

Значения температурного коэффициента скорости k_t для каждого из образцов и расширенная неопределенность измерений (при k=2) приведены в таблице 7.1.2. ТКС определялся экспериментально в диапазоне температуры образцов (17÷27) °С.

Отрицательное значение коэффициента соответствует уменьшению скорости продольных ультразвуковых волн при увеличении температуры.

Номер образца	Материал образца	Обозначение образца	Толщина, мм	k_t , м/(с·°С)	$U(k_t),$ $M/(c.^{\circ}C)$
Nº1	Кварцевое стекло КВ	10 № 05	9,91	0,5	0,1
N <u>∘</u> 2	Кварцевое стекло КВ	20№05	19,95	0,5	0,1
N <u>∘</u> 3	Кварцевое стекло КУ-1	40№1	40,05	0,7	0,1
N <u>∘</u> 4	Стекло БК8	20№1	20,05	0,0	0,1
N <u>∘</u> 5	Сталь 40X13	10 № 2	10,84	- 0,5	0,1
Nº6	Сталь 40X13	20№1	21,18	- 0,5	0,1

Таблица 7.1.2

7.1.5.3 Корреляция

Входные величины рассматриваются как некоррелированные.

7.1.5.4 Суммарная стандартная неопределенность

Суммарная стандартная неопределенность измерений скорости распространения продольных ультразвуковых волн $u_c(C_L)$ рассчитывается по формуле

$$u_{c}(C_{L}) = \begin{bmatrix} c^{2}(d)u_{A}^{2}(\overline{d}) + c^{2}(T)u_{A}^{2}(\overline{T}) + c^{2}(d)u_{B}^{2}(\Delta d) + c^{2}(T)u_{B}^{2}(\Delta T) + c^{2}(T)u_{B}^{2}(\Delta \tau) + \\ + c^{2}(d)u_{B}^{2}(\Delta X) + c^{2}(T)u_{B}^{2}(\Delta T_{dif}) + c^{2}(t)u_{B}^{2}(t) + c^{2}(k_{t})u_{B}^{2}(k_{t}) + u_{B}^{2}(\Delta C_{dis}) \end{bmatrix}^{1/2},$$

где $c(d) = 2(N-1)/\overline{T}$; $c(T) = -2(N-1)d/\overline{T}^2$; $c(t) = -k_t$; $c(k_t) = 20-t$ являются коэффициентами чувствительности.

7.1.5.5 Расширенная неопределенность

Расширенная неопределенность $U(C_L)$ определяется по формуле:

$$U(C_L) = k \cdot u_c(C_L),$$

где k – коэффициент охвата при уровне доверия P=0,95 (k=2).

7.1.6 Результаты измерений толщины образцов, времени и скорости распространения продольных ультразвуковых волн

Результаты измерений толщины образцов, времени и скорости распространения продольных ультразвуковых волн представлены в таблицах 7.1.3-7.1.6.

Моториони	Образец №1	Образец №2	Образец №3	Образец №4	Образец №5	Образец №6
материал и	Кварцевое стекло	Кварцевое стекло	Кварцевое стекло	Стекло БК8	Сталь 40Х13	Сталь 40Х13
обозначение образца	KB10№05	KB 20№05	КУ-1 40№1	20№1	10№2	20№1
	9,908	19,955	40,051	20,026	10,8389	21,1854
	9,915	19,956	40,053	20,025	10,8389	21,1854
	9,912	19,956	40,055	20,025	10,8386	21,1854
	9,911	19,956	40,053	20,027	10,8382	21,1854
Результаты	9,911	19,956	40,051	20,027	10,8380	21,1848
измерений d_j , мм	9,914	19,955	40,052	20,029	10,8378	21,1848
	9,912	19,957	40,051	20,027	10,8378	21,1840
	9,912	19,955	40,049	20,027	10,8385	21,1840
	9,911	19,956	40,053	20,025	10,8385	21,1842
	9,911	19,955	40,055	20,028	10,8386	21,1845
Среднее арифметическое значение <i>d</i> , мм	9,9117	19,9557	40,0523	20,0266	10,8384	21,1848
Стандартная неопределенность измерений $u_A(\overline{d})$, мм	0,00060	0,00021	0,00060	0,00043	0,00013	0,00019
n _d	10	10	10	10	10	10

Таблица 7.1.3 – Результаты измерений толщины образцов

Образец	Образец №1 Кварцевое стекло КВ 10№05						Образец №2 Кварцевое стекло КВ 20№05			
Точка	0	1	2	3	4	0	1	2	3	4
	3,3222	3,3224	3,3224	3,3216	3,3222	6,6940	6,6942	6,6944	6,6950	6,6950
	3,3220	3,3220	3,3222	3,3222	3,3218	6,6942	6,6946	6,6944	6,6950	6,6946
	3,3220	3,3222	3,3222	3,3226	3,3220	6,6944	6,6946	6,6944	6,6950	6,6948
	3,3220	3,3224	3,3222	3,3222	3,3222	6,6944	6,6944	6,6942	6,6956	6,6958
	3,3218	3,3224	3,3222	3,3224	3,3220	6,6944	6,6940	6,6940	6,6950	6,6936
	3,3220	3,3228	3,3218	3,3224	3,3216	6,6940	6,6942	6,6940	6,6946	6,6948
	3,3218	3,3230	3,3214	3,3224	3,3224	6,6946	6,6944	6,6944	6,6950	6,6950
	3,3218	3,3230	3,3220	3,3226	3,3222	6,6944	6,6940	6,6942	6,6948	6,6948
T_{ij} , мкс	3,3214	3,3220	3,3224	3,3218	3,3218	6,6940	6,6946	6,6942	6,6950	6,6954
	3,3220	3,3222	3,3220	3,3222	3,3214	6,6942	6,6940	6,6938	6,6952	6,6960
	3,3218	3,3220	3,3220	3,3216	3,3224	6,6944	6,6942	6,6940	6,6948	6,6952
	3,3222	3,3224	3,3220	3,3220	3,3214	6,6942	6,6942	6,6940	6,6950	6,6952
	3,3224	3,3216	3,3222	3,3222	3,3216	6,6944	6,6944	6,6940	6,6950	6,6948
	3,3220	3,3214	3,3222	3,3220	3,3214	6,6944	6,6938	6,6940	6,6948	6,6948
	3,3222	3,3222	3,3222	3,3218	3,3214	6,6940	6,6938	6,6940	6,6946	6,6948
	3,3222	3,3220	3,3220	3,3224	3,3222	6,6946	6,6940	6,6940	6,6952	6,6950
	3,3224	3,3218	3,3222	3,3214	3,3216	6,6944	6,6942	6,6938	6,6950	6,6948
$\overline{T_i}$, мкс	3,32201	3,32222	3,32209	3,32211	3,32186	6,69429	6,69421	6,69411	6,69495	6,69491
n _T	17	17	17	17	17	17	17	17	17	17
$u_A(\overline{T_i})$, мкс	0,00006	0,00011	0,00006	0,00009	0,00009	0,00005	0,00006	0,00005	0,00004	0,00011
t, °C	20,2	20,2	20,2	20,1	20,2	20,4	20,1	20,4	20,0	20,3
\overline{C}_{Li} , м/с	5967,29	5966,91	5967,14	5967,12	5967,56	5962,00	5962,08	5962,17	5961,42	5961,46
\overline{T} , мкс			3,32205			6,69447				
$u_A(\overline{T})$, мкс			0,00003			0,00002				
\overline{C}_L , m/c			5967,21			5961,85				

Таблица 7.1.4 – Результаты измерений времени и скорости распространения продольных ультразвуковых волн.

Образец	Образец №3 Кварцевое стекло КУ-1 40№1						Образец №4 Стекло БК8 20№1				
Точка	0	1	2	3	4	0	1	2	3	4	
	13,4984	13,4984	13,4976	13,4974	13,4984	7,0136	7,0138	7,0138	7,0138	7,0148	
	13,4984	13,4988	13,4974	13,4976	13,4982	7,0146	7,0138	7,0132	7,0134	7,0140	
	13,4984	13,4984	13,4978	13,4978	13,4980	7,0146	7,0134	7,0132	7,0134	7,0138	
	13,4984	13,4986	13,4974	13,4976	13,4984	7,0140	7,0134	7,0138	7,0136	7,0136	
	13,4984	13,4986	13,4980	13,4976	13,4982	7,0142	7,0134	7,0144	7,0136	7,0138	
	13,4976	13,4984	13,4980	13,4978	13,4982	7,0146	7,0136	7,0132	7,0132	7,0138	
	13,4980	13,4982	13,4986	13,4978	13,4984	7,0138	7,0140	7,0130	7,0136	7,0142	
	13,4984	13,4982	13,4974	13,4978	13,4984	7,0132	7,0140	7,0136	7,0134	7,0142	
T_{ij} , мкс	13,4980	13,4988	13,4974	13,4978	13,4984	7,0134	7,0136	7,0138	7,0130	7,0146	
	13,4984	13,4986	13,4972	13,4976	13,4976	7,0140	7,0140	7,0138	7,0138	7,0138	
	13,4982	13,4986	13,4976	13,4978	13,4978	7,0132	7,0138	7,0134	7,0138	7,0148	
	13,4980	13,4980	13,4974	13,4976	13,4980	7,0132	7,0140	7,0130	7,0136	7,0140	
	13,4984	13,4978	13,4970	13,4974	13,4980	7,0132	7,0136	7,0136	7,0132	7,0144	
	13,4986	13,4978	13,4976	13,4974	13,4982	7,0136	7,0140	7,0142	7,0140	7,0138	
	13,4986	13,4978	13,4976	13,4978	13,4976	7,0138	7,0138	7,0134	7,0136	7,0132	
	13,4980	13,4984	13,4978	13,4978	13,4982	7,0138	7,0134	7,0132	7,0130	7,0140	
	13,4980	13,4982	13,4974	13,4974	13,4980	7,0144	7,0134	7,0130	7,0136	7,0136	
$\overline{T_i}$, мкс	13,49825	13,49833	13,49760	13,49765	13,49812	7,01384	7,01371	7,01351	7,01351	7,01402	
n _T	17	17	17	17	17	17	17	17	17	17	
$u_A(\overline{T_i})$, мкс	0,00007	0,00008	0,00009	0,00004	0,00006	0,00012	0,00006	0,00010	0,00007	0,00011	
t, °C	20,1	20,2	20,3	20,1	20,2	20,4	20,1	20,1	20,1	20,1	
\overline{C}_{Li} , м/с	5934,44	5934,41	5934,73	5934,71	5934,50	5710,60	5710,70	5710,87	5710,87	5710,45	
\overline{T} , мкс			13,49791			7,01367					
$u_A(\overline{T})$, MKC			0,00003			0,00004					
\overline{C}_L , м/с			5934,56			5710,71					

Таблица 7.1.5 – Результаты измерений времени и скорости распространения продольных ультразвуковых волн.

Образец		Образец Ј	№5 Сталь 402	X13 10№2		Образец №6 Сталь 40Х13 20№1				
Точка	0	1	2	3	4	0	1	2	3	4
	3,6112	3,6114	3,6100	3,6106	3,6078	7,0604	7,0604	7,0588	7,0586	7,0592
	3,6104	3,6108	3,6122	3,6118	3,6088	7,0586	7,0604	7,0584	7,0592	7,0596
	3,6104	3,6108	3,6114	3,6102	3,6098	7,0584	7,0606	7,0588	7,0588	7,0602
	3,6134	3,6110	3,6100	3,6110	3,6084	7,0596	7,0606	7,0580	7,0594	7,0604
	3,6116	3,6110	3,6102	3,6116	3,6082	7,0600	7,0594	7,0590	7,0594	7,0602
	3,6120	3,6110	3,6118	3,6096	3,6088	7,0590	7,0604	7,0590	7,0576	7,0600
	3,6120	3,6108	3,6122	3,6104	3,6086	7,0582	7,0600	7,0584	7,0588	7,0598
	3,6114	3,6122	3,6100	3,6092	3,6088	7,0588	7,0602	7,0580	7,0584	7,0582
T_{ij} , мкс	3,6128	3,6104	3,6100	3,6094	3,6076	7,0594	7,0600	7,0584	7,0586	7,0596
	3,6132	3,6106	3,6100	3,6100	3,6090	7,0588	7,0598	7,0586	7,0594	7,0600
	3,6108	3,6106	3,6120	3,6096	3,6090	7,0590	7,0604	7,0594	7,0590	7,0606
	3,6102	3,6108	3,6108	3,6102	3,6080	7,0590	7,0596	7,0580	7,0588	7,0606
	3,6118	3,6126	3,6114	3,6104	3,6088	7,0582	7,0598	7,0588	7,0590	7,0596
	3,6114	3,6108	3,6114	3,6098	3,6096	7,0596	7,0602	7,0582	7,0588	7,0610
	3,6118	3,6118	3,6112	3,6100	3,6084	7,0588	7,0600	7,0588	7,0592	7,0604
	3,6106	3,6122	3,6100	3,6094	3,6088	7,0588	7,0606	7,0592	7,0588	7,0602
	3,6132	3,6120	3,6112	3,6100	3,6090	7,0590	7,0602	7,0594	7,0584	7,0600
$\overline{T_i}$, мкс	3,61166	3,61122	3,61093	3,61019	3,60867	7,05904	7,06015	7,05866	7,05884	7,05998
n _T	17	17	17	17	17	17	17	17	17	17
$u_A(\overline{T_i})$, мкс	0,00025	0,00016	0,00021	0,00018	0,00014	0,00015	0,00009	0,00011	0,00011	0,00016
<i>t</i> , °C	20,3	20,4	20,2	20,2	20,3	20,1	20,8	20,5	20,2	20,1
\overline{C}_{Li} , м/с	6001,90	6002,62	6003,11	6004,34	6006,87	6002,18	6001,63*	6002,50	6002,35	6001,38
\overline{T} , мкс			3,61020					7,05924		
$\overline{u_A(\overline{T})}$, мкс			0,00008			0,00005				
$\overline{\overline{C}}_L$, м/с			6004,29			6002,02*				

Таблица 7.1.6 – Результаты измерений времени и скорости распространения продольных ультразвуковых волн.

*В результат измерений введена поправка на ТКС $\Delta C_t = 0,4$ м/с (точка 1).

7.1.7 Бюджеты неопределенности

Таблица 7.1.7

Материал и	Величина	Единица	Оценка	Стандартная	Тип неопреде-	Распределение	Коэффициент	Вклад
обозначение	x_i	измерений		неопределенность	ленности		чувствительности	неопределенности
образца				$u(x_i)$			$c(x_i)$	$ c(x_i) u(x_i)$, m/c
Образец № 1	d	MM	9,9117	0,00060	А	нормальное	0,602 мкс ⁻¹	0,361
Кварцевое стекло	Т	мкс	3,32205	0,00003	А	нормальное	- 1,796 мм [.] мкс ⁻²	0,059
KB 10№05.	Δd	MM	0,00128	0,00074	В	прямоугольное	0,602 мкс ⁻¹	0,446
	ΔT	мкс	0,00005	0,00003	В	прямоугольное	- 1,796 мм [·] мкс ⁻²	0,055
	$\Delta \tau$	мкс	0,0004	0,00023	В	прямоугольное	- 1,796 мм [.] мкс ⁻²	0,415
	ΔX	MM	0,2	0,00039	В	прямоугольное	0,602 мкс ⁻¹	0,234
	ΔT_{dif}	мкс	0,00035	0,0002	В	прямоугольное	- 1,796 мм [.] мкс ⁻²	0,365
	ΔC_{dis}	м/с	0,4	0,23	В	прямоугольное	1	0,231
	Δt	°C	0,1	0,058	В	прямоугольное	- 0,5 м/(с [.] °С)	0,029
	Δk_t	м/(с [.] °С)	0,1	0,058	В	прямоугольное	- 0,5 °C	0,029
	C_L	м/с	5967,2	суммарная				0,87

Таблица 7.1.8

Материал и	Величина	Единица	Оценка	Стандартная	Тип неопреде-	Распределение	Коэффициент	Вклад
обозначение	x_i	измерений		неопределенность	ленности		чувствительности	неопределенности
образца				$u(x_i)$			$c(x_i)$	$ c(x_i) u(x_i)$, m/c
Образец № 2	d	MM	19,9557	0,00021	А	нормальное	0,299 мкс ⁻¹	0,063
Кварцевое стекло	Т	мкс	6,69447	0,00002	А	нормальное	- 0,890 мм [·] мкс ⁻²	0,022
КВ 20№05	Δd	MM	0,00137	0,00079	В	прямоугольное	0,299 мкс ⁻¹	0,236
	ΔT	мкс	0,00009	0,00005	В	прямоугольное	- 0,890 мм [·] мкс ⁻²	0,045
	$\Delta \tau$	мкс	0,0004	0,00023	В	прямоугольное	- 0,890 мм [·] мкс ⁻²	0,206
	ΔX	MM	0,2	0,00019	В	прямоугольное	0,299 мкс ⁻¹	0,058
	ΔT_{dif}	мкс	0,00018	0,00010	В	прямоугольное	- 0,890 мм [·] мкс ⁻²	0,090
	ΔC_{dis}	м/с	0,40	0,23	В	прямоугольное	1	0,231
	Δt	°C	0,1	0,058	В	прямоугольное	- 0,5 м/(с [.] °С)	0,029
	Δk_t	$M/(c \cdot \circ C)$	0,1	0,058	В	прямоугольное	- 0,5 °C	0,029
	C_L	м/с	5961,9	суммарная				0,41

Таблица 7.1.9								
Материал и	Величина	Единица	Оценка	Стандартная	Тип неопреде-	Распределение	Коэффициент	Вклад
обозначение	x_i	измерений		неопределенность	ленности		чувствительности	неопределенности
образца				$u(x_i)$			$c(x_i)$	$ c(x_i) u(x_i)$, m/c
Образец № 3	d	ММ	40,0523	0,00060	А	нормальное	0,148 мкс ⁻¹	0,089
Кварцевое стекло	Т	мкс	13,49791	0,00003	А	нормальное	- 0,440 мм [·] мкс ⁻²	0,012
КУ-1 40№1	Δd	MM	0,00153	0,00089	В	прямоугольное	0,148 мкс ⁻¹	0,131
	ΔT	мкс	0,00015	0,00009	В	прямоугольное	- 0,440 мм [·] мкс ⁻²	0,039
	$\Delta \tau$	мкс	0,0004	0,00023	В	прямоугольное	- 0,440 мм [·] мкс ⁻²	0,102
	ΔX	MM	0,2	0,00010	В	прямоугольное	0,148 мкс ⁻¹	0,014
	ΔT_{dif}	мкс	0,00009	0,00005	В	прямоугольное	- 0,440 мм [·] мкс ⁻²	0,022
	ΔC_{dis}	м/с	0,4	0,23	В	прямоугольное	1	0,230
	Δt	°C	0,1	0,058	В	прямоугольное	- 0,7 м/(с·°С)	0,040
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	- 0,5 °C	0,029
	C_L	м/с	5934,6	суммарная				0,30

Таблица 7.1.10

Материал и	Величина	Единица	Оценка	Стандартная	Тип неопреде-	Распределение	Коэффициент	Вклад
обозначение	x_i	измерений		неопределенность	ленности		чувствительности	неопределенности
образца				$u(x_i)$			$c(x_i)$	$ c(x_i) u(x_i)$, m/c
Образец № 4	d	MM	20,0266	0,00043	А	нормальное	0,285 мкс ⁻¹	0,123
Стекло БК8 20№1	Т	мкс	7,01367	0,00004	А	нормальное	- 0,814 мм·мкс ⁻²	0,030
	Δd	MM	0,00137	0,00079	В	прямоугольное	0,285 мкс ⁻¹	0,225
	ΔT	мкс	0,00009	0,00005	В	прямоугольное	- 0,814 мм [.] мкс ⁻²	0,042
	$\Delta \tau$	мкс	0,0004	0,00023	В	прямоугольное	- 0,814 мм [.] мкс ⁻²	0,188
	ΔX	MM	0,2	0,00019	В	прямоугольное	0,285 мкс ⁻¹	0,055
	ΔT_{dif}	мкс	0,00018	0,00011	В	прямоугольное	- 0,814 мм [·] мкс ⁻²	0,086
	ΔC_{dis}	м/с	0,38	0,22	В	прямоугольное	1	0,221
	Δt	°C	0,1	0,058	В	прямоугольное	0 м/(с∙°С)	0,000
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	- 0,5 °C	0,029
	C_L	м/с	5710,7	суммарная				0,40

Материал и	Величина	Единица	Оценка	Стандартная	Тип неопреде-	Распределение	Коэффициент	Вклад
обозначение	x_i	измерений		неопределенность	ленности	1	чувствительности	неопределенности
образца				$u(x_i)$			$c(x_i)$	$ c(x_i) u(x_i)$, m/c
Образец № 5	d	ММ	10,8384	0,00013	А	нормальное	0,554 мкс ⁻¹	0,072
Сталь 40X13	Т	мкс	3,61020	0,00008	А	нормальное	- 1,663 мм·мкс ⁻²	0,132
10 № 2	Δd	MM	0,00129	0,00074	В	прямоугольное	0,554 мкс ⁻¹	0,413
	ΔT	мкс	0,00006	0,00003	В	прямоугольное	- 1,663 мм·мкс ⁻²	0,054
	Δau	мкс	0,0004	0,00023	В	прямоугольное	- 1,663 мм·мкс ⁻²	0,384
	ΔX	MM	0,2	0,00036	В	прямоугольное	0,554 мкс ⁻¹	0,197
	ΔT_{dif}	мкс	0,00032	0,00018	В	прямоугольное	- 1,663 мм·мкс ⁻²	0,307
	ΔC_{dis}	м/с	0,6	0,35	В	прямоугольное	1	0,347
	Δt	°C	0,1	0,058	В	прямоугольное	0,5 м/(с∙°С)	0,029
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	- 0,5 °C	0,029
	C_L	м/с	6004,3	суммарная				0,77

Таблица 7.1.11

Таблица 7.1.12

Материал и	Величина	Единица	Оценка	Стандартная	Тип неопреде-	Распределение	Коэффициент	Вклад
обозначение	x_i	измерений		неопределенность	ленности		чувствительности	неопределенности
образца				$u(x_i)$			$c(x_i)$	$ c(x_i) u(x_i)$, m/c
Образец № 6	d	MM	21,1848	0,00019	А	нормальное	0,283 мкс ⁻¹	0,054
Сталь 40X13	Т	мкс	7,05924	0,00005	А	нормальное	- 0,850 мм [·] мкс ⁻²	0,043
20№1	Δd	ММ	0,00138	0,00079	В	прямоугольное	0,283 мкс ⁻¹	0,225
	ΔT	мкс	0,00009	0,00005	В	прямоугольное	- 0,850 мм [·] мкс ⁻²	0,044
	$\Delta \tau$	мкс	0,0004	0,00023	В	прямоугольное	- 0,850 мм [·] мкс ⁻²	0,196
	ΔX	MM	0,2	0,00018	В	прямоугольное	0,283 мкс ⁻¹	0,051
	ΔT_{dif}	мкс	0,00016	0,00009	В	прямоугольное	- 0,850 мм [·] мкс ⁻²	0,080
	ΔC_{dis}	м/с	3,0	1,73	В	прямоугольное	1	1.733
	Δt	°C	0,1	0,058	В	прямоугольное	0,5 м/(с∙°С)	0,029
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	- 0,5 °C	0,029
	C_L	м/с	6002,0	суммарная				1,76

7.2 Результаты измерений, представленные Дальневосточным филиалом ФГУП «ВНИИФТРИ», Россия (ИЗУ-1)

7.2.1 Наименование, тип и номер эталонов, используемых для измерения толщины образца и скорости распространения продольных ультразвуковых волн

Для измерений толщины образцов применялся длиномер вертикальный ИЗВ-3 №760069. Предел допускаемой абсолютной погрешности длиномера (0,0012+*d*/120000) мм, где *d* – измеряемая толщина в мм.

Для измерений скорости распространения продольных ультразвуковых волн применялась эталонная установка для комплексных измерений акустических параметров твердых сред ИЗУ-1 №01.

7.2.2 Условия измерений

Температура окружающего воздуха (20 ± 1) °С.

Температура образцов (20 ÷ 24) °С.

Для измерений температуры применялся термоэлектрический измеритель TH-485. Предел допускаемой абсолютной погрешности измерений 0,1 °C.

7.2.3 Описание эталона, методика выполнения измерений скорости (времени) распространения продольных ультразвуковых волн

В эталоне используются бесконтактные широкополосные емкостные методы возбуждения и регистрации ультразвука и эхо-импульсный и резонансный методы измерений скорости распространения продольных ультразвуковых волн.

Емкостные преобразователи с тонкопленочным оксидным диэлектриком имеют полосу частот (0,5÷100) МГц, что исключает перенастройку преобразователей и установки при проведении акустических измерений во всем диапазоне рабочих частот.

Схема эталонной установки приведена на рис. 7.2.1.

Рис. 7.2.1. Схема установки ИЗУ при измерениях эхо-импульсным (а) и резонансным (б) методами.

I, *II* – возбуждающий и приемный ЕП. 1, 3 – электроды; 2 – образец; 4, 5 – источники постоянного поляризующего напряжения; 6 – предусилитель; 7 – полосовой усилитель;

8 – генератор радиоимпульсов; 9 – цифровой запоминающий осциллограф;

10 – анализатор спектра. S – диэлектрический слой; C_p – разделительный конденсатор; R – зарядное сопротивление.

В эхо-импульсном методе измерений производится генерация ультразвуковых радиоимпульсов с заданной частотой и длительностью в образцах с помощью излучающего емкостного преобразователя (EП) И генератора радиоимпульсов. Регистрация переотраженных в образце ультразвуковых импульсов осуществляется на противоположной поверхности образца с помощью приемного ЕП, расположенного соосно излучающим преобразователем. Сигнал усиливается предусилителем, с усилителем и воспроизводится на экране цифрового фильтруется полосовым осциллографа (ЦЗО) LeCroy WaveSurfer 422. Осциллограммы запоминающего ультразвуковых сигналов приведены на рис. 7.2.2.

Рис. 7.2.2. Осциллограммы акустических импульсов. *f*=10 МГц. а) Акустические сигналы продольных ультразвуковых волн (ось X1: 5 мкс/дел). б) Совмещение акустических импульсов *k* и *m* на экране цифрового осциллографа (ось X2: 100 нс/дел).

Измерения времени распространения продольных ультразвуковых волн T_{km} производятся между *k*-м и *m*-м переотраженными ультразвуковыми импульсами. Выбор номеров импульсов определяется условиями минимизации дифракционных явлений и зависит от частоты, диаметра электродов ЕП и толщины образцов. В сличениях m - k = 1. Для измерения временных интервалов применяется метод совмещения сигналов на экране цифрового запоминающего осциллографа (рис. 7.2.2). Величина временного сдвига двух сигналов относительно момента запуска осциллографа измеряется в зависимости от частоты продольных ультразвуковых волн с дискретностью 0,2-1 нс. Число измерений временных интервалов составляет $n_T = 11$. При измерениях контролируется температура образца с точностью 0,1 °C.

Скорость распространения продольных ультразвуковых волн в эхо-импульсном режиме измерений рассчитывается по формуле

$$C_L = \frac{2d(m-k)}{T_{km}}$$

где d – толщина образца; T_{km} – временной интервал между k-м и m-м ультразвуковыми импульсами.

Резонансный метод измерений основан на бесконтактном возбуждении непрерывных ультразвуковых колебаний с плавно меняющейся частотой с помощью широкополосного излучающего емкостного преобразователя и трекинг-генератора анализатора спектра и формировании в плоскопараллельном образце толщиной d акустических спектральных линий (АСЛ) на резонансных частотах, кратных частотному интервалу между соседними линиями $\Delta f = C_L/2d$ (рис. 7.2.3). Регистрация частотной

картины АСЛ осуществляется с помощью широкополосного приемного емкостного преобразователя и приемного блока анализатора спектра.

Измерения частоты максимума акустической спектральной линии f_m с номером m, положение которой наиболее близко к требуемой частоте ультразвуковых колебаний, проводятся с использованием измерительных маркеров анализатора спектра GSP-7830. Число измерений $n_f = 11$. При измерениях контролируется температура образца с точностью 0,1 °C.

Рис. 7.2.3. Спектрограмма акустических спектральных линий. Частота маркера f_m =5,0125 МГц; Δf =122 кГц (ось X: 50 кГц/дел).

Скорость распространения продольных ультразвуковых волн в резонансном режиме измерений рассчитывается по формуле

$$C_L = \frac{2df_m}{m},$$

где d – толщина образца; f_m – частота максимума АСЛ; m – номер АСЛ.

Измерения толщины образца *d* производились с использованием длиномера ИЗВ-3 в 10 точках: в центре образца и девяти точках, равномерно расположенных на границе осесимметричной зоны диаметром 30 мм.

7.2.4 Модель измерений

Скорость распространения продольных ультразвуковых волн в образце, приведенная к температуре 20 °C, в эхо-импульсном режиме измерений определяется в соответствии со следующей моделью измерений

$$C_{L,20} = \frac{2d(m-k)}{T_{km}} + \Delta C_{dif} + \Delta C_t,$$

где d – толщина образца; T_{km} – временной интервал между k-м и m-м ультразвуковыми импульсами; ΔC_{dif} – дифракционная поправка; ΔC_t – поправка на температурную зависимость скорости.

Скорость распространения продольных ультразвуковых волн в образце, приведенная к температуре 20 °C, в *резонансном режиме* измерений определяется в соответствии со следующей моделью измерений

$$C_{L,20} = \frac{2df_m}{m} + \Delta C_{dif} + \Delta C_t \,,$$

где d – толщина образца; f_m – частота максимума АСЛ; m – номер АСЛ; ΔC_{dif} – дифракционная поправка; ΔC_t – поправка на температурную зависимость скорости.

7.2.5 Определение составляющих суммарной стандартной неопределенности измерений и поправок

7.2.5.1 Оценка стандартной неопределенности по типу А

Распределение вероятности принимается нормальным.

Среднее арифметическое значение результата измерения толщины образца \overline{d} определяется по формуле

$$\overline{d} = \frac{1}{n_d} \sum_{j=1}^{n_d} d_j ,$$

где d_j – результат измерения толщины образца в *j*-й точке поверхности; n_d – число измерений толщины образца (n_d =10).

Стандартная неопределенность измерений толщины образца, оцениваемая по типу А, вычисляется по формуле

$$u_{A}(\overline{d}) = \sqrt{\frac{\sum_{j=1}^{n_{d}} (d_{j} - \overline{d})^{2}}{n_{d}(n_{d} - 1)}}.$$

Средние арифметические значения результатов измерений времени распространения продольных ультразвуковых волн \overline{T}_{km} и частоты максимума акустической спектральной линии \overline{f}_m определяются по формулам

$$\overline{T}_{km} = \frac{1}{n_T} \sum_{j=1}^{n_T} T_{km,j} , \ \overline{f}_m = \frac{1}{n_f} \sum_{j=1}^{n_f} f_{m,j} ,$$

где $T_{km,j}$ – результат *j*-го измерения временного интервала между *k*-м и *m*-м импульсами; $f_{m,j}$ – результат *j*-го измерения частоты максимума АСЛ; $n_T = n_f = 11$ – число измерений.

Стандартные неопределенности измерений времени распространения продольных ультразвуковых волн и частоты максимума акустической спектральной линии, оцениваемые по типу A, вычисляются по формулам

$$u_{A}(\overline{T}_{km}) = \sqrt{\frac{\sum_{j=1}^{n_{T}} (T_{km,j} - \overline{T}_{km})^{2}}{n_{T}(n_{T} - 1)}}, \ u_{A}(\bar{f}_{m}) = \sqrt{\frac{\sum_{j=1}^{n_{f}} (f_{m,j} - \bar{f}_{m})^{2}}{n_{f}(n_{f} - 1)}}$$

7.2.5.2 Оценка стандартной неопределенности по типу В

Для стандартной неопределенности измерений, оцениваемой по типу В, принято, что все входные параметры x_i заданы симметричными границами $a(x_i)$. Распределение вероятности внутри границ – равномерное (прямоугольное).

Стандартная неопределенность по типу В $u_B(x_i)$ вычисляется по формуле

$$u_B(x_i) = \frac{a(x_i)}{\sqrt{3}}$$

Источники стандартной неопределенности по типу В, обозначения и формулы для определения границ $a(x_i)$ приведены в таблице 7.2.1 для эхо-импульсного метода и в таблице 7.2.2 для резонансного метода.

		0	1	n	v	
Габлица	1	1	I —	- ' ' I X ()	импульсный метол	измерении
таолица	'	• •	1	OAU	пыпульсный метод	nomepennin

Источник стандартной неопределенности	$u_B(x_i)$	Границы $a(x_i)$
Неточность измерителя толщины образца – длиномера ИЗВ-3 (где <i>d</i> – в мм)	$u_B(\Delta d)$	$a(\Delta d) = 0,0012 + \frac{d}{120000}$
Неточность измерителя временных интервалов – цифрового осциллографа WaveSurfer 422	$u_B(\Delta T)$	$a(\Delta T) = 2 \cdot 10^{-11} + 10^{-5} T$
Неточность временной привязки к ультразвуковым импульсам	$u_B(\Delta\tau)$	$a(\Delta \tau) = \Delta \tau$
Несоосность электродов возбуждающего и приемного емкостного преобразователя	$u_B(\Delta X)$	$a(\Delta X) = \frac{(\Delta X)^2}{5(m-n)d}$
Непараллельность рабочих поверхностей образца	$u_B(\varphi)$	$a(\varphi) = 4\varphi^2 d$
Неточность определения дифракционной поправки	$u_B(\Delta C_{dif})$	<i>a</i> (∆ <i>C_{dif}</i>) ≤2 м/с
Неточность измерителя температуры образца	$u_B(t)$	$a(\Delta t) = \Delta t$
Неточность температурного коэффициента скорости	$u_B(k_t)$	$a(k_t) = U(k_t)$

Таблица 7.2.2 – Резонансный метод измерений

Источник стандартной неопределенности	$u_B(x_i)$	Границы $a(x_i)$
Неточность измерителя толщины образца – длиномера ИЗВ-3 (где <i>d</i> – в мм)	$u_B(\Delta d)$	$a(\Delta d) = 0,0012 + \frac{d}{120000}$
Неточность частоты опорного генератора анализатора спектра ($\delta f_0 = 5 \cdot 10^{-6}$)	$u_B(\delta f_0)$	$a(\delta f_0) = 5 \cdot 10^{-6} f_m$
Неточность маркерных измерений частоты максимума акустических спектральных линий	$u_B(\Delta f)$	$a(\Delta f) = \Delta f$
Несоосность электродов возбуждающего и приемного емкостного преобразователя	$u_B(\Delta X)$	$a(\Delta X) = \frac{\left(\Delta X\right)^2}{20d}$
Непараллельность рабочих поверхностей образца	$u_B(\phi)$	$a(\varphi) = 4\varphi^2 d$
Дифракционные эффекты	$u_B(\Delta C_{dif})$	<i>a</i> (∆ <i>C_{dif}</i>) ≤2 м/с
Неточность измерителя температуры образца	$u_B(t)$	$a(\Delta t) = \Delta t$
Неточность температурного коэффициента скорости	$u_B(k_t)$	$a(k_t) = U(k_t)$

Обозначения в таблицах:

 Δd – границы погрешности измерителя толщины; ΔT – границы погрешности измерителя временных интервалов; $\Delta \tau$ – границы погрешности временной привязки; Δf – дискретность отсчета частоты маркера анализатора спектра; ΔX – допускаемая несоосность электродов возбуждающего и приемного емкостного преобразователя; φ – угол, характеризующий непараллельность поверхностей образца; Δt – границы погрешности измерителя температуры образца; $U(k_t)$ – расширенная неопределенность измерений температурного коэффициента скорости (ТКС).

При численном оценивании неопределенностей измерений принято: $\Delta \tau = (0,5-1)$ нс; $\Delta f = 10 \ \Gamma_{II}$; $\Delta X \le 0,2 \ \text{мм}$; $\Delta t = 0,1^{\circ}\text{C}$; $\Delta k_t = U(k_t) = 0,1 \ \text{м/(c}^{\circ}\text{C})$. Для средств измерений (длиномер ИЗВ-3, осциллограф WaveSurfer422 и измеритель температуры TH-485) в качестве границ приняты границы абсолютной погрешности измерений параметров, указанные в Паспорте или Руководстве по эксплуатации. Для анализатора спектра GSP-7830 входными параметрами являются предел допускаемой относительной погрешности частоты опорного генератора и дискретность отсчета частоты маркера.

Неопределенность временной привязки к ультразвуковым импульсам задана дискретностью отсчета генератора задержки осциллографа WaveSurfer 422 на применяемой развертке.

Несоосность электродов излучающего и приемного ЕП увеличивает расстояние, пройденное импульсами, в сравнении с толщиной образца. Применяемые методы обеспечивают несоосность ΔX не более 0,2 мм.

Непараллельность поверхностей образца φ приводит к изменению длины пути импульсов. Относительное значение неопределенности при $\varphi \leq 10^{-4}$ рад составляет порядка 10^{-6} , т.е. величину незначительную.

Дифракционные явления приводят к отклонению измеряемых временных интервалов между переотраженными акустическими импульсами от истинных и смещению частоты максимума АСЛ и наиболее заметны на частотах менее 10 МГц.

Дифракционная поправка для эхо-импульсного метода измерений вводится на частотах *f* ≤10 МГц и рассчитывается по формуле

$$\Delta C_{dif} = -C_L \left[\frac{5.2}{z^{3/2} (k_L a)^2} - 7 \cdot 10^{-4} \frac{(k_L a)^2 - 2200}{(k_L a)^2 + 13z^2} \right],$$

где C_L – измеренное значение скорости продольных ультразвуковых волн; k_L – волновое число; a – радиус электрода; z – параметр, равный $z = (d/a)\sqrt{(2k-1)(2m-1)}$.

Введение дифракционной поправки обусловлено расположением электродов ЕП непосредственно на поверхности образца и достаточно большим диаметром электродов, равным 2*a*=10 мм.

Дифракционная поправка для *резонансного метода* измерений принимается равной нулю с соответствующей неопределенностью.

Поправка на температурную зависимость скорости ΔC_t приводит результаты измерений к температуре 20 °С и рассчитывается по формуле

$$\Delta C_t = (20 - t)k_t,$$

где *t* – температура образца; *k*_t – температурный коэффициент скорости (ТКС).

7.2.5.3 Корреляция

Входные величины рассматриваются как некоррелированные.

7.2.5.4 Суммарная стандартная неопределенность

Суммарная стандартная неопределенность измерений скорости распространения продольных ультразвуковых волн $u_c(C_L)$ для эхо-импульсного метода вычисляется по формуле

$$u_{c}(C_{L}) = \begin{bmatrix} c^{2}(d)u_{A}^{2}(\overline{d}) + c^{2}(T)u_{A}^{2}(\overline{T}_{km}) + c^{2}(d)u_{B}^{2}(\Delta d) + c^{2}(T)u_{B}^{2}(\Delta T) + c^{2}(T)u_{B}^{2}(\Delta \tau) + \\ + c^{2}(d)u_{B}^{2}(\Delta X) + c^{2}(t)u_{B}^{2}(t) + c^{2}(k_{t})u_{B}^{2}(k_{t}) + c^{2}(\Delta C_{dif})u_{B}^{2}(\Delta C_{dif}) \end{bmatrix}^{\frac{1}{2}}$$

где $c(d) = 2(m-k)/T_{km}$; $c(T) = -2(m-k)d/T_{km}^2$; $c(t) = -k_t$; $c(k_t) = 20-t$; $c(\Delta C_{dif}) = 1$ являются коэффициентами чувствительности.

Суммарная стандартная неопределенность измерений скорости распространения продольных ультразвуковых волн $u_c(C_L)$ для *резонансного метода* вычисляется по формуле

$$u_{c}(C_{L}) = \begin{bmatrix} c^{2}(d)u_{A}^{2}(\bar{d}) + c^{2}(f)u_{A}^{2}(\bar{f}_{m}) + c^{2}(d)u_{B}^{2}(\Delta d) + c^{2}(f)u_{B}^{2}(f_{0}) + c^{2}(f)u_{B}^{2}(\Delta f) + \\ + c^{2}(d)u_{B}^{2}(\Delta X) + c^{2}(t)u_{B}^{2}(t) + c^{2}(k_{t})u_{B}^{2}(k_{t}) + c^{2}(\Delta C_{dif})u_{B}^{2}(\Delta C_{dif}) \end{bmatrix}^{1/2},$$

где $c(d) = 2f_m/m$; c(f) = 2d/m; $c(t) = -k_t$; $c(k_t) = 20 - t$; $c(\Delta C_{dif}) = 1$ являются коэффициентами чувствительности.

7.2.5.5 Расширенная неопределенность

Расширенная неопределенность $U(C_L)$ определяется по формуле:

$$U(C_L) = k \cdot u_c(C_L),$$

где k – коэффициент охвата при уровне доверия P=0,95 (k=2).

7.2.6 Результаты измерений толщины образцов, времени и скорости распространения продольных ультразвуковых волн (эхо-импульсный метод)

Результаты измерений толщины образцов представлены в разделе 7.1.6 (таблица 7.1.3).

Результаты измерений времени и скорости распространения продольных ультразвуковых волн на частотах 2,5; 5 и 10 МГц эхо-импульсным методом представлены в таблицах 7.2.3-7.2.4.

7.2.7 Результаты измерений частоты максимума акустических спектральных линий и скорости распространения продольных ультразвуковых волн (резонансный метод)

Результаты измерений частоты максимума акустических спектральных линий и скорости распространения продольных ультразвуковых волн на частотах 2,5; 5 и 10 МГц резонансным методом представлены в таблицах 7.2.5-7.2.6.

1 /

Материал и обозначение образца		Образец №1		Образец №2			Образец №1		
	Кварцев	ое стекло К	B10№05	Кварцев	ое стекло К	B20№05	Кварцевс	ое стекло КУ	/-1 40№1
Частота, МГц	2,5	5	10	2,5	5	10	2,5	5	10
	_	3,321	3,3210	6,688	6,691	6,6900	13,489	13,493	13,4920
	—	3,321	3,3215	6,693	6,691	6,6900	13,490	13,494	13,4920
	_	3,321	3,3210	6,691	6,691	6,6905	13,493	13,493	13,4920
	_	3,320	3,3215	6,691	6,691	6,6900	13,490	13,494	13,4915
Время распространения	_	3,321	3,3210	6,693	6,691	6,6900	13,494	13,494	13,4915
продольных ультразвуковых	_	3,321	3,3210	6,690	6,691	6,6900	13,495	13,493	13,4915
волн $T_{km,j}$, мкс	—	3,320	3,3210	6,690	6,691	6,6905	13,493	13,493	13,4920
	—	3,321	3,3210	6,689	6,691	6,6900	13,494	13,494	13,4915
	—	3,321	3,3210	6,689	6,690	6,6900	13,492	13,493	13,4915
	_	3,321	3,3210	6,687	6,690	6,6900	13,491	13,493	13,4915
	—	3,321	3,3210	6,689	6,691	6,6900	13,490	13,495	13,4915
\overline{T}_{km} , мкс	_	3,32082	3,32109	6,69000	6,69082	6,69009	13,49191	13,49355	13,49168
$u_A(\overline{T}_{km})$, MKC	_	0,00012	0,00006	0,00057	0,00012	0,00006	0,00061	0,00021	0,00008
<i>n_T</i>	—	11	11	11	11	11	11	11	11
k-m	_	9-10	9-10	4-5	4-5	4-5	4-5	4-5	4-5
Измеренное значение \overline{C}_L , м/с	—	5969,43	5968,94	5965,83	5965,10	5965,75	5937,23	5936,51	5937,33
Температура образца t, °С	_	22,4	21,9	20,80	22,2	22,9	22,5	22	22,4
k_t , м/(с·°С)		0,5			0,5			0,7	
Температурная поправка ΔC_t , м/с	_	- 1,2	- 0,95	- 0,40	- 1,10	- 1,45	- 1,72	- 1,43	- 1,66
Дифракционная поправка ΔC_{dif} , м/с		- 0,58	0,07	- 1,64	- 0,71	0,09	- 0,51	- 0,20	0,02
Исправленное значение $\overline{C}_{L,20}$, м/с	_	5967,66	5968,06	5963,79	5963,29	5964,39	5935,00	5934,87	5935,69

Таблица 7.2.3 – Результаты измерений (эхо-импульсный метод)

Материал и обозначение образца	(Образец №4	-	Образец №5			Образец №6		
	Сте	екло БК8 20.	20№1 Сталь 40Х13 10№2				Ста	ль 40X13 20	Nº1
Частота, МГц	2,5	5	10	2,5	5	10	2,5	5	10
	7,013	7,013	7,0130	_	3,611	3,6115	7,058	7,057	7,0570
	7,013	7,012	7,0130	_	3,612	3,6120	7,058	7,056	7,0565
	7,012	7,012	7,0135	_	3,612	3,6115	7,050	7,059	7,0580
	7,011	7,013	7,0135	_	3,612	3,6110	7,050	7,059	7,0585
Время распространения	7,014	7,012	7,0135	_	3,612	3,6110	7,057	7,056	7,0575
продольных ультразвуковых	7,015	7,013	7,0135	_	3,611	3,6120	7,056	7,059	7,0570
волн $T_{km,j}$, мкс	7,014	7,014	7,0130	_	3,612	3,6115	7,054	7,056	7,0580
	7,013	7,012	7,0135		3,611	3,6120	7,054	7,061	7,0575
	7,014	7,013	7,0135	_	3,611	3,6105	7,052	7,055	7,0580
	7,013	7,013	7,0135	_	3,612	3,6115	7,050	7,059	7,0575
	7,015	7,013	7,0130	_	3,613	3,6115	7,052	7,055	7,0575
\overline{T}_{km} , мкс	7,01336	7,01273	7,01332	_	3,61173	3,61145	7,05373	7,05745	7,05755
$u_A(\overline{T}_{km})$, MKC	0,00036	0,00019	0,00008		0,00019	0,00014	0,00095	0,00061	0,00017
n _T	11	11	11	—	11	11	11	11	11
k-m	4-5	4-5	4-5	_	8-9	8-9	4-5	4-5	4-5
Измеренное значение \overline{C}_L , м/с	5710,98	5711,50	5711,02	—	6001,78	6002,24	6006,70	6003,52	6003,45
Температура образца <i>t</i> , °С	23,7	23,4	22,63	_	20,90	21,30	23,10	23,70	21,30
k_t , m/(c·°C)	0,0			- 0,5		- 0,5			
Температурная поправка ΔC_t , м/с	_	_	_	_	0,45	0,65	1,55	1,85	0,65
Дифракционная поправка ΔC_{dif} , м/с	- 1,48	- 0,63	0,15	_	- 0,62	0,07	- 1,51	- 0,65	0,07
Исправленное значение $\overline{C}_{L,20}$, м/с	5709,50	5710,87	5711,17	_	6001,62	6002,95	6006,74	6004,73	6004,17

Таблица 7.2.4 – Результаты измерений (эхо-импульсный метод)

Материал и обозначение образца		Образец №1			Образец №2	,	Образец №1		
	Кварцев	ое стекло Kl	B 10№05	Кварцевое стекло КВ 20№05			Кварцевое стекло КУ-1 40№1		
Частота, МГц	2,5	5	10	2,5	5	10	2,5	5	10
	2,40857	5,11755	9,93352	2,54014	4,92994	10,00857	2,51968	5,03881	10,00393
	2,40841	5,11743	9,93375	2,54026	4,92993	10,00860	2,51969	5,03888	10,00395
	2,40851	5,11730	9,93325	2,53996	4,93013	10,00879	2,51966	5,03891	10,00386
	2,40860	5,11782	9,93327	2,54040	4,93009	10,00878	2,51973	5,03884	10,00400
Частота максимума акустических	2,40859	5,11759	9,93355	2,54002	4,93006	10,00830	2,51977	5,03884	10,00391
спектральных линий f МГи	2,40862	5,11752	9,93385	2,53985	4,93007	10,00828	2,51959	5,03879	10,00398
$J_{m,j}$	2,40855	5,11756	9,93374	2,53988	4,92980	10,00827	2,51975	5,03872	10,00405
	2,40859	5,11751	9,93301	2,54042	4,92982	10,00885	2,51964	5,03880	10,00398
	2,40869	5,11750	9,93367	2,54043	4,93008	10,00852	2,51958	5,03872	10,00382
	2,40850	5,11773	9,93377	2,53991	4,92966	10,00886	2,51972	5,03888	10,00385
	2,40866	5,11755	9,93342	2,54028	4,92983	10,00850	2,51968	5,03876	10,00392
$ar{f}_m$, МГц	2,408572	5,117551	9,933527	2,540141	4,929946	10,008575	2,519681	5,038814	10,003932
$u_A(ar{f}_m),$ МГц	0,000024	0,000041	0,000080	0,000068	0,000046	0,000068	0,000018	0,000019	0,000021
n_f	11	11	11	11	11	11	11	11	11
m	8	17	33	17	33	67	34	68	135
Измеренное значение \overline{C}_L , м/с	5968,26	5967,49	5967,16	5963,56	5962,46	5962,03	5936,41	5935,77	5936,01
Температура образца <i>t</i> , °С	22,6	22,6	22,6	20,3	20,3	20,3	21,3	21,3	21,3
k_t , м/(с·°С)		0,5			0,5			0,7	
Температурная поправка ΔC_t , м/с	- 1,30	- 1,30	- 1,30	- 0,15	- 0,15	- 0,15	- 0,91	- 0,91	- 0,91
Исправленное значение $\overline{C}_{L,20}$, м/с	5966,96	5966,19	5965,86	5963,41	5962,31	5961,88	5935,50	5934,86	5935,10

Таблица 7.2.5 – Результаты измерений (резонансный метод)

Материал и обозначение образца		Образец №4	-		Образец №5		Образец №6		
	Сте	екло БК8 20.	Nº1	Сталь 40X13 10№2			Сталь 40Х13 20№1		
Частота, МГц	2,5	5	10	2,5	5	10	2,5	5	10
	2,42332	4,98950	9,97910	_	4,98384	9,96477	2,550875	4,95815	10,05554
	2,42349	4,98953	9,97900		4,98397	9,96464	2,550873	4,95800	10,05540
	2,42338	4,98969	9,97890	_	4,98379	9,96489	2,550850	4,95805	10,05564
	2,42348	4,98993	9,97960	_	4,98374	9,96478	2,550884	4,95812	10,05541
Частота максимума акустических	2,42320	4,98915	9,97961	_	4,98349	9,96483	2,550870	4,95819	10,05566
спектральных линий f МГи	2,42334	4,98944	9,97838	_	4,98397	9,96459	2,550852	4,95833	10,05556
$\int m_{j} f_{m,j}$	2,42318	4,98971	9,97901	_	4,98404	9,96471	2,550920	4,95822	10,05560
	2,42327	4,98910	9,97909	_	4,98388	9,96486	2,550875	4,95815	10,05562
	2,42342	4,98941	9,97940	—	4,98381	9,96465	2,550870	4,95818	10,05558
	2,42306	4,98934	9,97815	_	4,98389	9,96496	2,550876	4,95812	10,05554
	2,42349	4,98985	9,97982	_	4,98395	9,96480	2,550910	4,95816	10,05554
$ar{f}_m$, МГц	2,423330	4,989514	9,979097	_	4,983852	9,964771	2,550878	4,958152	10,055554
$u_A(\bar{f}_m),$ МГц	0,000043	0,000080	0,000154	_	0,000045	0,000034	0,000006	0,000026	0,000025
n_f	11	11	11	_	11	11	11	11	11
m	17	35	70	—	18	36	18	35	71
Измеренное значение \overline{C}_L , м/с	5709,54	5709,89	5709,93	_	6001,89	6000,12	6004,43	6002,14	6000,70
Температура образца t, °С	22,7	22,7	22,7	_	23,1	22,9	23,5	23,3	23,4
k_t , м/(с.°С)		0			- 0,5			- 0,5	
Температурная поправка ΔC_t , м/с			_		1,55	1,45	1,75	1,65	1,70
Исправленное значение $\overline{C}_{L,20}$, м/с	5709,54	5709,89	5709,93	_	6003,44	6001,57	6006,18	6003,79	6002,40

Таблица 7.2.6 – Результаты измерений (резонансный метод)

7.2.8 Бюджеты неопределенности

7.2.8.1 Эхо-импульсный метод

Частота, МГц	Величина <i>x_i</i>	Единица измерений	Оценка	Стандартная неопределенность <i>u</i> (<i>x_i</i>)	Тип неопределенности	Распределение	Коэффициент чувствительности <i>c</i> (x _i)	Вклад неопределенности <i>c</i> (<i>x_i</i>) <i>u</i> (<i>x_i</i>), м/с
5	d	ММ	9,9117	0,00060	А	нормальное	0,602 мкс ⁻¹	0,361
	Т	мкс	3,32082	0,00012	А	нормальное	- 1,798 мм [.] мкс ⁻²	0,219
	Δd	MM	0,00128	0,00074	В	прямоугольное	0,602 мкс ⁻¹	0,446
	ΔT	мкс	0,00005	0,00003	В	прямоугольное	- 1,798 мм [.] мкс ⁻²	0,055
	$\Delta \tau_{np}$	мкс	0,001	0,00058	В	прямоугольное	- 1,798 мм [.] мкс ⁻²	1,038
	ΔX	MM	0,2	0,00047	В	прямоугольное	0,602 мкс ⁻¹	0,281
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,2	0,115	В	прямоугольное	- 0,5 м/(с·°С)	0,058
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	2,4 °C	0,139
	C _{L,20}	м/с	5967,65		суммарная			1,70
10	d	ММ	9,9117	0,00060	А	нормальное	0,602 мкс ⁻¹	0,361
	Т	мкс	3,32109	0,00006	А	нормальное	- 1,798 мм [.] мкс ⁻²	0,110
	Δd	MM	0,00128	0,00074	В	прямоугольное	0,602 мкс ⁻¹	0,446
	ΔT	мкс	0,00005	0,00003	В	прямоугольное	- 1,798 мм [.] мкс ⁻²	0,055
	$\Delta \tau_{np}$	мкс	0,0005	0,00029	В	прямоугольное	- 1,798 мм [.] мкс ⁻²	0,519
	ΔX	MM	0,2	0,00047	В	прямоугольное	0,602 мкс ⁻¹	0,281
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,3	0,173	В	прямоугольное	- 0,5 м/(с·°С)	0,087
	Δk_t	м/(с [.] °С)	0,1	0,058	В	прямоугольное	1,9 °C	0,110
	C _{L,20}	м/с	5968,06		суммарная			1,40

Таблица 7.2.7 – Образец №1. Кварцевое стекло КВ 10№05

Частота, МГц	Величина <i>x_i</i>	Единица измерений	Оценка	Стандартная неопределенность <i>u</i> (<i>x_i</i>)	Тип неопределенности	Распределение	Коэффициент чувствительности <i>с</i> (<i>x_i</i>)	Вклад неопределенности <i>c</i> (<i>x_i</i>) <i>u</i> (<i>x_i</i>), м/с
	d	ММ	19,9557	0,00021	А	нормальное	0,299 мкс ⁻¹	0,060
	Т	мкс	6,69000	0,00057	А	нормальное	- 0,892 мм·мкс ⁻²	0,510
	Δd	MM	0,00137	0,00079	В	прямоугольное	0,299 мкс ⁻¹	0,236
	ΔT	мкс	0,00009	0,00005	В	прямоугольное	- 0,892 мм [.] мкс ⁻²	0,045
2.5	$\Delta \tau_{np}$	мкс	0,001	0,00058	В	прямоугольное	- 0,892 мм·мкс ⁻²	0,515
2,5	ΔX	MM	0,2	0,00023	В	прямоугольное	0,299 мкс ⁻¹	0,069
	ΔC_{dif}	м/с	4	2,31	В	прямоугольное	1	2,309
	Δt	°C	0,2	0,115	В	прямоугольное	- 0,5 м/(с·°С)	0,058
	Δk_t	м/(с∙°С)	0,1	0,058	В	прямоугольное	0,8 °C	0,046
	$C_{L,20}$	м/с	5963,79		суммарная			2,44
	d	ММ	19,9557	0,00021	А	нормальное	0,299 мкс ⁻¹	0,060
	Т	мкс	6,69082	0,00012	А	нормальное	- 0,892 мм·мкс ⁻²	0,109
	Δd	MM	0,00137	0,00079	В	прямоугольное	0,299 мкс ⁻¹	0,236
	ΔT	мкс	0,00009	0,00005	В	прямоугольное	- 0,892 мм [.] мкс ⁻²	0,045
~	$\Delta \tau_{np}$	мкс	0,001	0,00058	В	прямоугольное	- 0,892 мм [.] мкс ⁻²	0,515
5	ΔX	MM	0,2	0,00023	В	прямоугольное	0,299 мкс ⁻¹	0,069
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,2	0,115	В	прямоугольное	- 0,5 м/(с∙°С)	0,058
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	2,2 °C	0,127
	$C_{L,20}$	м/с	5963,29		суммарная			1,30
	d	ММ	19,9557	0,00021	А	нормальное	0,299 мкс ⁻¹	0,060
	Т	мкс	6,69009	0,00006	А	нормальное	- 0,892 мм [.] мкс ⁻²	0,054
	Δd	MM	0,00137	0,00079	В	прямоугольное	0,299 мкс ⁻¹	0,236
	ΔT	мкс	0,00009	0,00005	В	прямоугольное	- 0,892 мм [.] мкс ⁻²	0,045
10	Δau_{np}	мкс	0,0005	0,00029	В	прямоугольное	- 0,892 мм [.] мкс ⁻²	0,257
	ΔX	MM	0,2	0,00023	В	прямоугольное	0,299 мкс ⁻¹	0,069
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,2	0,115	В	прямоугольное	- 0,5 м/(с·°С)	0,058
	Δk_t	м/(с∙°С)	0,1	0,058	В	прямоугольное	2,9 °C	0,167
	C _{L,20}	м/с	5964,39		суммарная			1,22

Таблица 7.2.8 – Образец № 2. Кварцевое стекло КВ 20№05

Частота, МГц	Величина <i>x_i</i>	Единица измерений	Оценка	Стандартная неопределенность <i>u</i> (<i>x_i</i>)	Тип неопределенности	Распределение	Коэффициент чувствительности $c(x_i)$	Вклад неопределенности <i>c</i> (<i>x_i</i>) <i>u</i> (<i>x_i</i>), м/с
2,5	d	MM	40,0523	0,00060	А	нормальное	0,148 мкс ⁻¹	0,089
	Т	мкс	13,49191	0,00061	А	нормальное	- 0,440 мм·мкс ⁻²	0,268
	Δd	ММ	0,00153	0,00089	В	прямоугольное	0,148 мкс ⁻¹	0,131
	ΔT	мкс	0,00015	0,00009	В	прямоугольное	- 0,440 мм·мкс ⁻²	0,039
	$\Delta \tau_{np}$	мкс	0,001	0,00058	В	прямоугольное	- 0,440 мм [.] мкс ⁻²	0,254
	ΔX	MM	0,2	0,00012	В	прямоугольное	0,148 мкс ⁻¹	0,017
	ΔC_{dif}	м/с	4	2,31	В	прямоугольное	1	2,309
	Δt	°C	0,2	0,115	В	прямоугольное	- 0,7 м/(с∙°С)	0,081
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	2,5 °C	0,142
	C _{L,20}	м/с	5934,97		суммарная			2,35
5	d	MM	40,0523	0,00060	А	нормальное	0,148 мкс ⁻¹	0,089
	Т	мкс	13,49355	0,00021	А	нормальное	- 0,440 мм·мкс ⁻²	0,091
	Δd	MM	0,00153	0,00089	В	прямоугольное	0,148 мкс ⁻¹	0,131
	ΔT	мкс	0,00015	0,00009	В	прямоугольное	- 0,440 мм [.] мкс ⁻²	0,039
	$\Delta \tau_{np}$	мкс	0,001	0,00058	В	прямоугольное	- 0,440 мм [.] мкс ⁻²	0,254
	ΔX	MM	0,2	0,00012	В	прямоугольное	0,148 мкс ⁻¹	0,017
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,3	0,173	В	прямоугольное	- 0,7 м/(с∙°С)	0,121
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	2,0 °C	0,118
	C _{L,20}	м/с	5934,91		суммарная			1,21
10	d	MM	40,0523	0,00060	А	нормальное	0,148 мкс ⁻¹	0,089
	Т	мкс	13,49168	0,00008	А	нормальное	- 0,440 мм [.] мкс ⁻²	0,033
	Δd	MM	0,00153	0,00089	В	прямоугольное	0,148 мкс ⁻¹	0,131
	ΔT	мкс	0,00015	0,00009	В	прямоугольное	- 0,440 мм [.] мкс ⁻²	0,039
	Δau_{np}	мкс	0,0005	0,00029	В	прямоугольное	- 0,440 мм [.] мкс ⁻²	0,127
	ΔX	MM	0,2	0,00012	В	прямоугольное	0,148 мкс ⁻¹	0,017
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,2	0,115	В	прямоугольное	- 0,7 м/(с·°С)	0,081
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	2,4 °C	0,137
	C _{L,20}	м/с	5935,67		суммарная			1,18

Таблица 7.2.9 – Образец № 3. Кварцевое стекло КУ-1 №1

Частота, МГц	Величина <i>x_i</i>	Единица измерений	Оценка	Стандартная неопределенность <i>u</i> (<i>x</i> _i)	Тип неопределенности	Распределение	Коэффициент чувствительности <i>c</i> (<i>x</i> .)	Вклад неопределенности $ c(x_i) u(x_i)$, м/с
	d	ММ	20.0266	0.00043	А	нормальное	0.285 мкс ⁻¹	0.123
	T	мкс	7.01336	0,00036	А	нормальное	- 0.814 мм·мкс ⁻²	0,296
	Δd	ММ	0,00137	0,00079	В	прямоугольное	0,285 мкс ⁻¹	0,225
	ΔT	мкс	0,00009	0,00005	В	прямоугольное	- 0,814 мм·мкс ⁻²	0,042
2.5	Δau_{np}	мкс	0,001	0,00058	В	прямоугольное	- 0,814 мм [.] мкс ⁻²	0,470
2,5	ΔX	MM	0,2	0,00023	В	прямоугольное	0,285 мкс ⁻¹	0,066
	ΔC_{dif}	м/с	4	2,31	В	прямоугольное	1	2,309
	Δt	°C	0,2	0,115	В	прямоугольное	0 м/(с.°С)	0,000
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	3,7 °C	0,214
	C _{L,20}	м/с	5709,51		суммарная			2,40
	d	ММ	20,0266	0,00043	А	нормальное	0,285 мкс ⁻¹	0,123
	Т	мкс	7,01273	0,00019	А	нормальное	- 0,814 мм·мкс ⁻²	0,159
	Δd	MM	0,00137	0,00079	В	прямоугольное	0,285 мкс ⁻¹	0,225
	ΔT	мкс	0,00009	0,00005	В	прямоугольное	- 0,814 мм [.] мкс ⁻²	0,042
-	$\Delta \tau_{np}$	мкс	0,001	0,00058	В	прямоугольное	- 0,814 мм [.] мкс ⁻²	0,470
5	ΔX	MM	0,2	0,00023	В	прямоугольное	0,285 мкс ⁻¹	0,066
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,2	0,115	В	прямоугольное	0 м/(с∙°С)	0,000
	Δk_t	м/(с∙°С)	0,1	0,058	В	прямоугольное	3,4 °C	0,194
	C _{L,20}	м/с	5710,87		суммарная			1,30
	d	MM	20,0266	0,00043	А	нормальное	0,285 мкс ⁻¹	0,123
	Т	мкс	7,01332	0,00008	А	нормальное	- 0,814 мм [.] мкс ⁻²	0,062
	Δd	ММ	0,00137	0,00079	В	прямоугольное	0,285 мкс ⁻¹	0,225
10	ΔT	мкс	0,00009	0,00005	В	прямоугольное	- 0,814 мм·мкс ⁻²	0,042
	$\Delta au_{\pi p}$	мкс	0,0005	0,00029	В	прямоугольное	- 0,814 мм·мкс ⁻²	0,235
	ΔX	ММ	0,2	0,00023	В	прямоугольное	0,285 мкс ⁻¹	0,066
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,2	0,115	В	прямоугольное	0 м/(с·°С)	0,000
	Δk_t	м/(с∙°С)	0,1	0,058	В	прямоугольное	2,6 °C	0,152
	C _{L,20}	м/с	5711,17		суммарная			1,22

Таблица 7.2.10 – Образец № 4. Стекло БК8 №1

Частота, МГц	Величина <i>x_i</i>	Единица измерений	Оценка	Стандартная неопределенность <i>u</i> (<i>x_i</i>)	Тип неопределенности	Распределение	Коэффициент чувствительности <i>с</i> (<i>x_i</i>)	Вклад неопределенности <i>c</i> (<i>x_i</i>) <i>u</i> (<i>x_i</i>), м/с
5	d	ММ	10,8384	0,00020	А	нормальное	0,554 мкс ⁻¹	0,111
	Т	мкс	3,61173	0,00020	А	нормальное	- 1,662 мм [.] мкс ⁻²	0,438
	Δd	ММ	0,00129	0,00074	В	прямоугольное	0,554 мкс ⁻¹	0,412
	ΔT	мкс	0,00006	0,00003	В	прямоугольное	- 1,662 мм [.] мкс ⁻²	0,054
	Δau_{np}	мкс	0,001	0,00029	В	прямоугольное	- 1,662 мм [.] мкс ⁻²	0,959
	ΔX	ММ	0,2	0,00043	В	прямоугольное	0,554 мкс ⁻¹	0,236
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,3	0,115	В	прямоугольное	0,5 м/(с∙°С)	0,087
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	1,3 °C	0,052
	C _{L,20}	м/с	6001,61		суммарная			1,64
10	d	ММ	10,8384	0,00020	А	нормальное	0,554 мкс ⁻¹	0,111
	Т	мкс	3,61145	0,00020	А	нормальное	- 1,662 мм [.] мкс ⁻²	0,338
	Δd	ММ	0,00129	0,00074	В	прямоугольное	0,554 мкс ⁻¹	0,412
	ΔT	мкс	0,00006	0,00003	В	прямоугольное	- 1,662 мм [.] мкс ⁻²	0,054
	$\Delta \tau_{np}$	мкс	0,0005	0,00029	В	прямоугольное	- 1,662 мм [.] мкс ⁻²	0,480
	ΔX	ММ	0,2	0,00043	В	прямоугольное	0,554 мкс ⁻¹	0,236
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,2	0,115	В	прямоугольное	0,5 м/(с∙°С)	0,058
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	1,3 °C	0,075
	C _{L,20}	м/с	6002,96		суммарная			1,39

Таблица 7.2.11 – Образец № 5. Сталь 40Х13 10№2
Частота, МГц	Величина <i>x_i</i>	Единица измерений	Оценка	Стандартная неопределенность <i>u</i> (<i>x_i</i>)	Тип неопределенности	Распределение	Коэффициент чувствительности <i>с</i> (<i>x_i</i>)	Вклад неопределенности <i>c</i> (<i>x_i</i>) <i>u</i> (<i>x_i</i>), м/с
	d	ММ	21,1848	0,00030	А	нормальное	0,284 мкс ⁻¹	0,085
	Т	мкс	7,05373	0,00095	А	нормальное	- 0,852 мм·мкс ⁻²	0,813
	Δd	ММ	0,00138	0,00080	В	прямоугольное	0,284 мкс ⁻¹	0,226
	ΔT	МКС	0,00009	0,00005	В	прямоугольное	- 0,852 мм [.] мкс ⁻²	0,045
2.5	$\Delta \tau_{np}$	мкс	0,001	0,00058	В	прямоугольное	- 0,852 мм·мкс ⁻²	0,492
2,5	ΔX	ММ	0,2	0,00022	В	прямоугольное	0,284 мкс ⁻¹	0,062
	ΔC_{dif}	м/с	4	2,31	В	прямоугольное	1	2,309
	Δt	°C	0,5	0,289	В	прямоугольное	0,5 м/(с∙°С)	0,144
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	3,1 °C	0,179
	$C_{L,20}$	м/с	6006,73		суммарная			2,52
	d	ММ	21,1848	0,00030	А	нормальное	0,284 мкс ⁻¹	0,085
	Т	мкс	7,05745	0,00061	А	нормальное	- 0,851 мм·мкс ⁻²	0,518
	Δd	ММ	0,00138	0,00080	В	прямоугольное	0,284 мкс ⁻¹	0,226
	ΔT	мкс	0,00009	0,00005	В	прямоугольное	- 0,851 мм·мкс ⁻²	0,044
5	$\Delta \tau_{np}$	мкс	0,001	0,00058	В	прямоугольное	- 0,851 мм·мкс ⁻²	0,491
5	ΔX	MM	0,2	0,00022	В	прямоугольное	0,284 мкс ⁻¹	0,062
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,2	0,115	В	прямоугольное	0,5 м/(с∙°С)	0,058
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	3,7 °C	0,214
	$C_{L,20}$	м/с	6004,73		суммарная			1,40
	d	ММ	21,1848	0,00030	А	нормальное	0,284 мкс ⁻¹	0,085
	Т	мкс	7,05755	0,00017	А	нормальное	- 0,851 мм·мкс ⁻²	0,146
	Δd	MM	0,00138	0,00080	В	прямоугольное	0,284 мкс ⁻¹	0,226
	ΔT	мкс	0,00009	0,00005	В	прямоугольное	- 0,851 мм·мкс ⁻²	0,044
10	Δau_{np}	мкс	0,0005	0,00029	В	прямоугольное	- 0,851 мм·мкс ⁻²	0,246
10	ΔX	MM	0,2	0,00022	В	прямоугольное	0,284 мкс ⁻¹	0,062
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,2	0,115	В	прямоугольное	0,5 м/(с∙°С)	0,058
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	1,3 °C	0,075
	C _{L,20}	м/с	6004,16		суммарная			1,22

Таблица 7.2.12 – Образец № 6. Сталь 40Х13 20№1

7.2.8.2 Резонансный метод

Частота,	Величина	Единица	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
ΜΓц	x_i	измерений		неопределенность	неопределенности		чувствительности	неопределенности
				$u(x_i)$			$c(x_i)$	$ c(x_i) u(x_i)$, m/c
2,5	d	MM	9,9117	0,00060	А	нормальное	0,602 МГц	0,361
	f	ΜΓц	2,40857	0,000024	А	нормальное	2,478 мм	0,058
	Δd	MM	0,00128	0,00074	В	прямоугольное	0,602 МГц	0,446
	Δf_0	МГц	0,000012	0,000007	В	прямоугольное	2,478 мм	0,017
	Δf	ΜΓц	0,000010	0,000006	В	прямоугольное	2,478 мм	0,014
	ΔX	MM	0,2	0,00012	В	прямоугольное	0,602 МГц	0,070
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	- 0,5 м/(с [.] °С)	0,029
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	2,6 °C	0,150
	$C_{L,20}$	м/с	5966,96		суммарная			1,30
5	d	ММ	9,9117	0,00060	А	нормальное	0,602 МГц	0,361
	f	МГц	5,11755	0,000041	А	нормальное	1,166 мм	0,048
	Δd	ММ	0,00128	0,00074	В	прямоугольное	0,602 МГц	0,446
	Δf_0	МГц	0,000026	0,000015	В	прямоугольное	1,166 мм	0,017
	Δf	МГц	0,000010	0,000006	В	прямоугольное	1,166 мм	0,007
	ΔX	MM	0,2	0,00012	В	прямоугольное	0,602 МГц	0,070
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	- 0,5 м/(с·°С)	0,029
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	2,6 °C	0,150
	$C_{L,20}$	м/с	5966,19		суммарная			1,30
10	d	MM	9,9117	0,00060	А	нормальное	0,602 МГц	0,361
	f	МГц	9,93352	0,000080	А	нормальное	0,601 мм	0,048
	Δd	MM	0,00128	0,00074	В	прямоугольное	0,602 МГц	0,446
	Δf_0	МГц	0,000050	0,000029	В	прямоугольное	0,601 мм	0,017
	Δf	МГц	0,000010	0,000006	В	прямоугольное	0,601 мм	0,003
	ΔX	MM	0,2	0,00012	В	прямоугольное	0,602 МГц	0,070
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	- 0,5 м/(с·°С)	0,029
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	2,6 °C	0,150
	C _{L,20}	м/с	5965,86		суммарная			1,30

Таблица 7.2.13 – Образец № 1. Кварцевое стекло КВ 10№05

Частота,	Величина	Единица	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
ΜГц	x_i	измерений		неопределенность	неопределенности		чувствительности	неопределенности
				$u(x_i)$			$c(x_i)$	$ c(x_i) u(x_i)$, m/c
2,5	d	MM	19,9557	0,00021	А	нормальное	0,299 МГц	0,060
	f	ΜΓц	2,54014	0,000068	А	нормальное	2,348 мм	0,161
	Δd	ММ	0,00137	0,00079	В	прямоугольное	0,299 МГц	0,236
	Δf_0	ΜΓц	0,000013	0,000007	В	прямоугольное	2,348 мм	0,017
	Δf	МГц	0,000010	0,000006	В	прямоугольное	2,348 мм	0,014
	ΔX	ММ	0,2	0,00006	В	прямоугольное	0,299 МГц	0,017
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	- 0,5 м/(с·°С)	0,029
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	0,3 °C	0,017
	C _{L,20}	м/с	5963,41		суммарная			1,19
5	d	ММ	19,9557	0,00021	А	нормальное	0,299 МГц	0,060
	f	МГц	4,92994	0,046	А	нормальное	1,209 мм	0,056
	Δd	ММ	0,00137	79	В	прямоугольное	0,299 МГц	0,236
	Δf_0	МГц	0,000025	0,000014	В	прямоугольное	1,209 мм	0,017
	Δf	МГц	0,000010	0,000006	В	прямоугольное	1,209 мм	0,007
	ΔX	ММ	0,2	0,00006	В	прямоугольное	0,299 МГц	0,017
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	- 0,5 м/(с·°С)	0,029
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	0,3 °C	0,017
	C _{L,20}	м/с	5962,31		суммарная			1,18
10	d	ММ	19,9557	0,00021	А	нормальное	0,299 МГц	0,060
	f	МГц	10,00857	0,000068	А	нормальное	0,596 мм	0,041
	Δd	ММ	0,00137	0,00079	В	прямоугольное	0,299 МГц	0,236
	Δf_0	МГц	0,000050	0,000029	В	прямоугольное	0,596 мм	0,017
	Δf	ΜΓц	0,000010	0,000006	В	прямоугольное	0,596 мм	0,003
	ΔX	ММ	0,2	0,00006	В	прямоугольное	0,299 МГц	0,017
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	- 0,5 м/(с·°С)	0,029
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	0,3 °C	0,017
	C _{L,20}	м/с	5961,88		суммарная			1,18

Таблица 7.2.14 – Образец № 2. Кварцевое стекло КВ 20№05

Частота,	Величина	Единица	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
ΜΓц	x_i	измерений		неопределенность	неопределенности		чувствительности	неопределенности
				$u(x_i)$			$c(x_i)$	$ c(x_i) u(x_i)$, m/c
2,5	d	ММ	40,0523	0,00060	А	нормальное	0,148 МГц	0,089
	f	ΜΓц	2,51968	0,018	А	нормальное	2,356 мм	0,043
	Δd	ММ	0,00153	0,00088	В	прямоугольное	0,148 МГц	0,131
	Δf_0	ΜΓц	0,000013	0,00007	В	прямоугольное	2,356 мм	0,017
	Δf	ΜΓц	0,000010	0,000006	В	прямоугольное	2,356 мм	0,014
	ΔX	ММ	0,2	0,00003	В	прямоугольное	0,148 МГц	0,004
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	- 0,7 м/(с·°С)	0,040
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	1,3 °C	0,075
	C _{L,20}	м/с	5935,50		суммарная			1,17
5	d	ММ	40,0523	0,00060	А	нормальное	0,148 МГц	0,089
	f	ΜΓц	5,03881	0,019	А	нормальное	1,178 мм	0,023
	Δd	ММ	0,00153	0,00088	В	прямоугольное	0,148 МГц	0,131
	Δf_0	ΜΓц	0,000025	0,000015	В	прямоугольное	1,178 мм	0,017
	Δf	ΜΓц	0,000010	0,000006	В	прямоугольное	1,178 мм	0,007
	ΔX	MM	0,2	0,00003	В	прямоугольное	0,148 МГц	0,004
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	- 0,7 м/(с.°С)	0,040
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	1,3 °C	0,075
	C _{L,20}	м/с	5934,86		суммарная			1,17
10	d	ММ	40,0523	0,00060	А	нормальное	0,148 МГц	0,089
	f	ΜΓц	10,00393	0,000021	А	нормальное	0,593 мм	0,012
	Δd	ММ	0,00153	0,00088	В	прямоугольное	0,148 МГц	0,131
	Δf_0	ΜΓц	0,000050	0,000029	В	прямоугольное	0,593 мм	0,017
	Δf	ΜΓц	0,000010	0,000006	В	прямоугольное	0,593 мм	0,003
	ΔX	ММ	0,2	0,00003	В	прямоугольное	0,148 МГц	0,004
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	- 0,7 м/(с·°С)	0,040
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	1,3 °C	0,075
	C _{L,20}	м/с	5935,10		суммарная			1,17

Таблица 7.2.15 – Образец № 3. Кварцевое стекло КУ-1 №1

Частота,	Величина	Единица	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
ΜΓц	x_i	измерений		неопределенность	неопределенности		чувствительности	неопределенности
				$u(x_i)$			$c(x_i)$	$ c(x_i) u(x_i)$, m/c
2,5	d	MM	20,0266	0,00043	А	нормальное	0,285 МГц	0,123
	f	ΜΓц	2,42332	0,000043	А	нормальное	2,356 мм	0,101
	Δd	ММ	0,00100	0,00058	В	прямоугольное	0,285 МГц	0,165
	Δf_0	ΜΓц	0,000012	0,00007	В	прямоугольное	2,356 мм	0,016
	Δf	ΜΓц	0,000010	0,000006	В	прямоугольное	2,356 мм	0,014
	ΔX	ММ	0,2	0,00006	В	прямоугольное	0,285 МГц	0,016
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	0 м/(с∙°С)	0,000
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	2,7 °C	0,156
	C _{L,20}	м/с	5709,54		суммарная			1,19
5	d	ММ	20,0266	0,00043	А	нормальное	0,285 МГц	0,123
	f	ΜΓц	4,98950	0,000080	А	нормальное	1,144 мм	0,092
	Δd	ММ	0,00100	0,00058	В	прямоугольное	0,285 МГц	0,165
	Δf_0	ΜΓц	0,000025	0,000014	В	прямоугольное	1,144 мм	0,016
	Δf	ΜΓц	0,000010	0,000006	В	прямоугольное	1,144 мм	0,007
	ΔX	MM	0,2	0,00006	В	прямоугольное	0,285 МГц	0,016
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	0 м/(с∙°С)	0,000
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	2,7 °C	0,156
	$C_{L,20}$	м/с	5709,89		суммарная			1,19
10	d	ММ	20,0266	0,00043	А	нормальное	0,285 МГц	0,123
	f	ΜΓц	9,97910	0,000154	А	нормальное	0,572 мм	0,088
	Δd	ММ	0,00100	0,00058	В	прямоугольное	0,285 МГц	0,165
	Δf_0	ΜΓц	0,000050	0,000029	В	прямоугольное	0,572 мм	0,016
	Δf	ΜΓц	0,000010	0,000006	В	прямоугольное	0,572 мм	0,003
	ΔX	ММ	0,2	0,00006	В	прямоугольное	0,285 МГц	0,016
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	0 м/(с.°С)	0,000
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	2,7 °C	0,156
	C _{L,20}	м/с	5709,93		суммарная			1,19

Таблица 7.2.16 – Образец № 4. Стекло БК8 №1

Частота,	Величина	Единица	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
ΜΓц	x_i	измерений		неопределенность	неопределенности		чувствительности	неопределенности
				$u(x_i)$			$c(x_i)$	$ c(x_i) u(x_i)$, m/c
5	d	MM	10,8384	0,00020	А	нормальное	0,554 МГц	0,111
	f	ΜΓц	4,98384	0,000049	А	нормальное	1,204 мм	0,059
	Δd	MM	0,00129	0,00074	В	прямоугольное	0,554 МГц	0,412
	Δf_0	ΜΓц	0,000025	0,000014	В	прямоугольное	1,204 мм	0,017
	Δf	ΜΓц	0,000010	0,000006	В	прямоугольное	1,204 мм	0,007
	ΔX	MM	0,2	0,00011	В	прямоугольное	0,554 МГц	0,059
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	0,5 м/(с∙°С)	0,029
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	3,1 °C	0,179
	C _{L,20}	м/с	6003,42		суммарная			1,25
10	d	ММ	10,8384	0,00020	А	нормальное	0,554 МГц	0,111
	f	ΜГц	9,96477	0,038	А	нормальное	0,602 мм	0,023
	Δd	ММ	0,00129	0,00074	В	прямоугольное	0,554 МГц	0,412
	Δf_0	ΜГц	0,000050	0,000029	В	прямоугольное	0,602 мм	0,017
	Δf	ΜГц	0,000010	0,000006	В	прямоугольное	0,602 мм	0,003
	ΔX	MM	0,2	0,00011	В	прямоугольное	0,554 МГц	0,059
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	0,5 м/(с.°С)	0,029
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	2,9 °C	0,167
	C _{L,20}	м/с	6001,57		суммарная			1,24

Таблица 7.2.17 – Образец № 5. Сталь 40Х13 10№2

Частота,	Величина	Единица	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
ΜΓц	x_i	измерений		неопределенность	неопределенности		чувствительности	неопределенности
				$u(x_i)$			$c(x_i)$	$ c(x_i) u(x_i)$, m/c
2,5	d	MM	21,1848	0,00030	А	нормальное	0,283 МГц	0,085
	f	ΜΓц	2,55088	0,000009	А	нормальное	2,354 мм	0,021
	Δd	MM	0,00138	0,00079	В	прямоугольное	0,283 МГц	0,225
	Δf_0	ΜΓц	0,000013	0,000007	В	прямоугольное	2,354 мм	0,017
	Δf	ΜΓц	0,000010	0,000006	В	прямоугольное	2,354 мм	0,014
	ΔX	MM	0,2	0,00005	В	прямоугольное	0,283 МГц	0,015
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	0,5 м/(с∙°С)	0,029
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	3,5 °C	0,202
	$C_{L,20}$	м/с	6006,17		суммарная			1,20
5	d	ММ	21,1848	0,00030	А	нормальное	0,283 МГц	0,085
	f	ΜΓц	4,95815	0,000041	А	нормальное	1,211 мм	0,050
	Δd	ММ	0,00138	0,00079	В	прямоугольное	0,283 МГц	0,225
	Δf_0	ΜΓц	0,000025	0,000014	В	прямоугольное	1,211 мм	0,017
	Δf	ΜΓц	0,000010	0,000006	В	прямоугольное	1,211 мм	0,007
	ΔX	MM	0,2	0,00005	В	прямоугольное	0,283 МГц	0,015
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	0,5 м/(с∙°С)	0,029
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	3,3 °C	0,191
	$C_{L,20}$	м/с	6003,79		суммарная			1,20
10	d	ММ	21,1848	0,00030	А	нормальное	0,283 МГц	0,085
	f	ΜΓц	10,05554	0,000039	А	нормальное	0,597 мм	0,023
	Δd	MM	0,00138	0,00079	В	прямоугольное	0,283 МГц	0,225
	Δf_0	ΜΓц	0,000050	0,000029	В	прямоугольное	0,597 мм	0,017
	Δf	ΜΓц	0,000010	0,000006	В	прямоугольное	0,597 мм	0,003
	ΔX	MM	0,2	0,00005	В	прямоугольное	0,283 МГц	0,015
	ΔC_{dif}	м/с	2	1,15	В	прямоугольное	1	1,155
	Δt	°C	0,1	0,058	В	прямоугольное	0,5 м/(с.°С)	0,029
	Δk_t	м/(с·°С)	0,1	0,058	В	прямоугольное	3,4 °C	0,196
	C _{L,20}	м/с	6002,45		суммарная			1,20

Таблица 7.2.18 – Образец № 6. Сталь 40Х13 20№1

7.3 Результаты измерений, представленные БелГИМ, Беларусь

7.3.1 Наименование, тип и номер эталонов, используемых для измерения толщины образца и скорости распространения продольных ультразвуковых волн

Установка для измерения скорости ультразвуковых колебаний УИСУ-3 №01:

- длиномер измерительный вертикальный ИЗВ-3 № 810126;

- осциллограф цифровой запоминающий HDO 6054 №LCRY3556N05701;

- дефектоскоп ультразвуковой Epoch XT №091298811, укомплектованный ультразвуковыми преобразователями для возбуждения и приема ультразвуковых колебаний требуемой частоты;

- иммерсионная ванна с устройством юстировки.

7.3.2 Условия измерений

Температура воды в иммерсионной ванне (19,3 ÷ 21,2) °С.

Измерения температуры воды осуществляется при помощи термометра цифрового Hanna (Checktemp) №1. Расширенная неопределенность при измерении температуры – 0,06 °C.

7.3.3 Описание эталона, методика выполнения измерений скорости (времени) распространения продольных ультразвуковых волн

Измерения скорости распространения продольных ультразвуковых волн проводились в соответствии с [2]. Измерения времени распространения продольных ультразвуковых волн производились осциллографом цифровым запоминающим HDO 6054 импульсным методом между 1-м и 2-м отраженными акустическими импульсами в центре образца (условная точка). Число измерений в каждой точке *n*=17.

Измерения толщины производились длиномером ИЗВ-3 в 10 точках поверхности образца: в центре и девяти равномерно расположенных точках на границе осесимметричной зоны диаметром 50 мм (кроме образца №5, для которого диаметр осесимметричной зоны 20 мм).

7.3.4 Модель измерений

Модель измерений скорости продольных ультразвуковых колебаний для частот 2,3 и 5 МГц.

Действительное значение скорости в каждом из образцов на частотах 2,3 и 5 МГц определяется в соответствии со следующей моделью измерений

$$C_{20} = 2 \cdot 1000 \cdot (j-i) \cdot \frac{(d+\delta d_s + \delta d_p)}{(T_{j-i} + \delta T_s + \delta T_D)} + (20^{\circ}\text{C} - t) \cdot k_t,$$
(7.3.1)

где

С₂₀ – скорость продольных ультразвуковых колебаний в исследуемом образце,

приведенная к 20 °C, м/с;

d – измеренная толщина образца в зоне аттестации, мм;

δd_s – поправка, связанная со средством измерений, которым производилось измерение линейных размеров образца, мм;

 δd_p – поправка, вызванная непараллельностью граней исследуемого образца, мм;

Т_{j-i} – измеренный временной интервал, мкс;

i, j – номера отсчетных импульсов (j > i);

 δT_s – поправка, связанная со средством измерений, которым производилось измерение временных интервалов, мкс;

 δT_D – дифракционная поправка, мкс;

t – температура воды, °С;

(20 - t) – отклонение температуры воды от номинального значения 20 °C;

 k_t – температурный коэффициент скорости, м/(с·°С).

Модель измерений скорости продольных ультразвуковых колебаний для частоты 10 МГц.

Для ультразвуковых преобразователей производства компании «Olympus» нормируется средняя частота, и ее значение может не совпадать с эффективной частотой. Действительное значение эффективной частоты эхо-сигнала для используемого преобразователя с номинальным значением 10 МГц составляет 8,5 МГц. Необходимо дополнить модель измерений, представленную формулой (7.3.1):

- ввести поправку и дополнительную составляющую неопределенности, учитывающую отклонение рабочей частоты преобразователя от номинального значения 10 МГц.

В связи с этим, дополнительно производились измерения временных интервалов с использованием преобразователя с действительным значением эффективной частоты 12 МГц (с целью определения поправки и исследования зависимости скорости продольных волн от эффективной частоты).

Модель измерений скорости продольных ультразвуковых колебаний для частоты 10 МГц принимает следующий вид:

$$C_{20}^{F=10 \text{ M}\Gamma \mu} = 2 \cdot 1000 \cdot (j-i) \cdot \frac{(d+\delta d_s+\delta d_p)}{(T_{j-i}+\delta T_s+\delta T_D)} + (20^{\circ}\text{C}-t) \cdot k_t + \Delta C_F,$$
(7.3.2)

где

 $C_{20}^{F=10 \text{ M}\Gamma \mu}$ – скорость продольных ультразвуковых колебаний в исследуемом образце на частоте 10 МГ μ , приведенная к 20 °C, м/с;

 ΔC_F — частотная поправка, связанная с зависимостью скорости продольных колебаний в образце от рабочей частоты преобразователя, м/с.

7.3.5 Определение составляющих суммарной стандартной неопределенности измерений и поправок

7.3.5.1 Измерение толщины (*d*)

Измерение толщины образца производилось длиномером измерительным вертикальным ИЗВ-3 в десяти точках.

Среднее арифметическое значение

$$\overline{d} = \frac{1}{10} \sum_{k=1}^{m} d^{(k)}$$
(7.3.3)

Стандартная неопределенность измерения

$$s(d) = \sqrt{\frac{\sum_{k=1}^{m} (d^{(k)} - \bar{d})^2}{90}}$$
(7.3.4)

Распределение принимается нормальным.

7.3.5.2 Поправка, связанная с линейным средством измерений (*δd_s*)

Согласно техническому описанию на длиномер ИЗВ-3, показания длиномера соответствуют измеряемой величине в пределах $\pm (0,0012 + \frac{d}{120000})$ мм при соблюдении условий измерений. Т.к. условия измерений соблюдены и практика поверки длиномера показывает, что на спецификацию изготовителя можно полагаться, поправка к показаниям длиномера принимается равной 0,0 мм в пределах $\pm (0,0012 + \frac{\overline{d}}{120000})$ мм. Распределение принимается прямоугольным.

7.3.5.3 Поправка, вызванная непараллельностью граней исследуемого образца (δd_p)

Непараллельность граней исследуемого образца приводит к изменению длины пути, пройденного ультразвуковым импульсом. Поскольку численное значение поправки, а также ее знак в общем случае оценить не представляется возможным, ее влияние можно учитывать, как дополнительный вклад в неопределенность, связанный с увеличением (уменьшением) времени пробега ультразвука в образце. Данная поправка принимается равной 0,0 мм с границами $\pm \frac{8\varphi^2 \overline{d}}{3}$, где φ – угол, характеризующий непараллельность граней образца. Значение φ можно оценить сверху, исходя из значения отклонения от параллельности, указанного в [2]. Учитывая, что для малых углов $\varphi = \frac{\Delta d_p}{L}$, где $\Delta d_p = 0,02$ мм – отклонение от параллельности, L = 100 мм – базовая длина, формула для расчета принимает вид $\pm 1 \cdot 10^{-7} \cdot \overline{d}$. Распределение принимается прямоугольным.

7.3.5.4 Измерение временного интервала (Т_{ј-i})

Измерение временных интервалов проводилось осциллографом цифровым запоминающим HDO 6054. В образцах измерялся временной интервал между 1-м и 2-м отраженными импульсами. Серия измерений включала в себя 17 измерений на каждом образце, перед каждым измерением производилось перенастройка акустической оси.

Среднее арифметическое
значение
$$\overline{T}_{i-j} = \frac{1}{17} \sum_{k=1}^{n} T_{i-j}^{(k)}$$
 (7.3.5)

Стандартная неопределенность измерения

$$s(T_{i-j}) = \sqrt{\frac{\sum_{k=1}^{n} (T_{i-j}^{(k)} - \overline{T}_{i-j})^2}{272}}$$
(7.3.6)

7.3.5.5 Поправка, связанная с осциллографом HDO 6054 (δT_s)

Согласно техническому описанию на осциллограф HDO 6054, его показания соответствуют измеряемой величине T в пределах $\pm (2,4 \times 10^{-11} \text{ c} + 2,5 \times 10^{-6} \text{ T}+9 \times 10^{-13} \text{ c})$, при соблюдении условий измерений: частота дискретизации 2,5 Гвыборок/с и количество измерений 1000. Т.к. условия измерений соблюдены и практика поверки осциллографа показывает, что на спецификацию изготовителя можно полагаться, поправка к показаниям осциллографа принимается равной 0,0 мкс.

7.3.5.6 Дифракционная поправка (δT_D)

Поправка не рассчитывалась, значение поправки принимается равным 0,0 мкс. Максимальное значение этой поправки для данных условий измерений оценивается значением 0,02 % для образцов из стекла на частотах до 25 МГц (данные предоставила пилот-лаборатория) и для образцов из стали 40Х13 до 10 МГц. Для образцов из стали 40Х13 на частотах свыше 10 МГц поправка оценивается значением 0,03 % (предварительная оценка на частотах 9 и 12 МГц). Значение поправки интерпретируется вкладом в суммарную неопределенность с границами ±0,0002*T* и ±0,0003*T*, соответственно. Распределение – прямоугольное.

7.3.5.7 Измерения температуры (t)

Согласно данным свидетельства о калибровки термометра цифрового Hanna (Checktemp) №1 в диапазоне температур от 18 °C до 22 °C, значение поправки 0,0 °C, расширенная неопределенность 0,06 °C, коэффициент охвата 1,65 при вероятности 95 %. Значение стандартной неопределенности 0,037 °C. Распределение – прямоугольное.

7.3.5.8 Температурный коэффициент скорости (k_t)

Температурные коэффициенты скорости (далее – ТКС) для каждого из образцов и неопределенность ТКС предоставлены пилот-лабораторией. Значения k_t представлены в таблицах с бюджетами неопределенностей для каждого образца. Значения k_t находятся в пределах($k_t \pm 0,1$) м/(с·°С). Для образца №4 (стекло БК8) значение $k_t=0$ м/(с·°С) и поправка к скорости в связи с отклонением температуры воды от 20 °С не рассчитывалась.

7.3.5.9 Частотная поправка, связанная с зависимостью скорости продольных колебаний в образце от рабочей частоты преобразователя (ΔC_F)

Из графиков зависимости скорости от частоты получены значения частотных поправок, которые вносят существенный вклад в результат измерений на частоте 10 МГц.

Поправка ΔC_F составляет для образцов из кварцевого стекла KB (образцы №1 и №2) «-0,95 м/с», кварцевого стекла KУ-1 (образец №3) «-0,5 м/с», стекла БК8 (образец №4) «-0,25 м/с», стали 40Х13 (образцы №5 и №6) «-0,75 м/с», при предположении линейной зависимости в диапазоне частот от 8,5 до 12 МГц. В качестве стандартной неопределенности приняты значения суммарных неопределенностей измерения скоростей на частоте 8,5 МГц для каждого образца.

Стандартные неопределенности для входных величин x_i с оцененными пределами $\pm a(x_i)$ определяются по формуле

$$u(x_i) = \frac{a(x_i)}{\sqrt{3}}$$

7.3.5.10 Корреляция

Входные величины рассматриваются как некоррелированные.

7.3.5.11 Суммарная стандартная неопределенность

Суммарная стандартная неопределенность для частот 2,3 и 5 МГц вычисляется по формуле

$$u(C_{20}) = \sqrt{\frac{(c(d) \cdot u(d))^{2} + (c(\delta d_{s}) \cdot u(\delta d_{s}))^{2} + (c(\delta d_{p}) \cdot u(\delta d_{p}))^{2} + (c(T_{j-i}) \cdot u(T_{j-i}))^{2} + (c(\delta T_{s}) \cdot u(\delta T_{s}))^{2} + (c(\delta T_{D}) \cdot u(\delta T_{D}))^{2} + (c(t) \cdot u(t))^{2} + (c(k_{t}) \cdot u(k_{t}))^{2}},$$
(7.3.7)

где

$$c(d) = c(d_s) = c(d_p) = \frac{2 \cdot 1000 \cdot (j-i)}{T_{j-i} + T_s + T_D};$$
(7.3.8)

$$c(T_{j-i}) = c(T_s) = c(T_D) = -\frac{2 \cdot 1000 \cdot (j-i) \cdot (d+d_s+d_p)}{(T_{j-i}+T_s+T_D)^2};$$
(7.3.9)

$$c(t) = k_t;$$
 (7.3.10)

$$c(k_t) = 20 - t ; (7.3.11)$$

являются коэффициентами чувствительности.

Суммарная стандартная неопределенность для частоты 10 МГц вычисляется по формуле

$$u(C_{20}) = \sqrt{\frac{(c(d) \cdot u(d))^{2} + (c(\delta d_{s}) \cdot u(\delta d_{s}))^{2} + (c(\delta d_{p}) \cdot u(\delta d_{p}))^{2} + (c(T_{j-i}) \cdot u(T_{j-i}))^{2} + (c(\delta T_{s}) \cdot u(\delta T_{s}))^{2} + (c(\delta T_{D}) \cdot u(\delta T_{D}))^{2} + (c(t) \cdot u(t))^{2} + (c(k_{t}) \cdot u(k_{t}))^{2} + (c(\Delta C_{F}) \cdot u(\Delta C_{F}))^{2}}, (7.3.12)$$

где
с(d) = c(d_{s}) = c(d_{p}), вычисляются по формуле (7.3.8);

 $c(T_{j-i}) = c(T_s) = c(T_D)$, вычисляются по формуле (7.3.9); $c(t) = k_t$; $c(k_t) = 20 - t$; $c(\Delta C_F) = 1$; являются коэффициентами чувствительности.

3.3.6 Результаты измерений толщины образцов

Результаты измерений толщины образцов представлены в таблице 7.3.1.

3.3.7 Результаты измерений времени и скорости распространения продольных ультразвуковых волн

Результаты измерений времени и скорости распространения продольных ультразвуковых волн представлены в таблицах 7.3.2-7.3.3.

Материал и	Образец №1	Образец №2	Образец №3	Образец №4	Образец №5	Образец №6
Материал и	Кварцевое стекло	Кварцевое стекло	Кварцевое стекло	Стекло БК8	Сталь 40Х13	Сталь 40Х13
ооозначение ооразца	KB10№05	KB 20№05	КУ-1 40№1	20№1	10№2	20№1
	9,908	19,956	40,051	20,025	10,838	21,188
	9,908	19,954	40,051	20,026	10,839	21,186
	9,908	19,957	40,052	20,026	10,837	21,187
	9,907	19,955	40,052	20,025	10,838	21,186
Результаты	9,907	19,957	40,052	20,025	10,837	21,184
измерений d^k , мм	9,907	19,954	40,052	20,026	10,838	21,185
	9,907	19,954	40,052	20,025	10,837	21,185
	9,907	19,952	40,052	20,025	10,836	21,184
	9,907	19,955	40,051	20,025	10,836	21,184
	9,907	19,956	40,051	20,026	10,837	21,183
Среднее						
арифметическое	9,9073	19,9550	40,0516	20,0254	10,8373	21,1852
значение \overline{d} , мм						
Стандартная						
неопределенность	0,00015	0,00049	0,00016	0,00016	0,00030	0,00049
измерений $u_A(\overline{d})$, мм						

Таблица 7.3.1 – Результаты измерений толщины образцов

Параметр	Образец	№1 Кварц	евое стекло	КВ №05	Образец	Образец №2 Кварцевое стекло КВ №05				Образец №3 Кварцевое стекло КУ-1 №1			
F , МГц	2,3	4,5	8,5	12	2,3	4,5	8,5	12	2,3	4,5	8,5	12	
	-	3,32089	3,32131	3,32270	6,69035	6,69158	6,69289	6,69457	13,49683	13,49657	13,49667	13,49697	
	-	3,32095	3,32131	3,32270	6,69020	6,69155	6,69290	6,69457	13,49662	13,49661	13,49669	13,49699	
	-	3,32089	3,32130	3,32270	6,69039	6,69156	6,69290	6,69457	13,49707	13,49657	13,49669	13,49697	
	-	3,32090	3,32131	3,32270	6,69009	6,69159	6,69289	6,69466	13,49666	13,49658	13,49670	13,49700	
	-	3,32099	3,32131	3,32270	6,69026	6,69158	6,69289	6,69462	13,49637	13,49657	13,49670	13,49701	
	-	3,32089	3,32131	3,32270	6,69024	6,69159	6,69289	6,69462	13,49663	13,49656	13,49670	13,49699	
	-	3,32095	3,32132	3,32270	6,69026	6,69159	6,69289	6,69461	13,49659	13,49656	13,49670	13,49702	
T ^k	-	3,32090	3,32131	3,32269	6,69029	6,69159	6,69289	6,69457	13,49673	13,49680	13,49670	13,49700	
I_{2-1} , MKC	-	3,32090	3,32132	3,32269	6,69014	6,69157	6,69290	6,69455	13,49659	13,49656	13,49670	13,49708	
	-	3,32089	3,32129	3,32269	6,69013	6,69157	6,69290	6,69457	13,49641	13,49695	13,49670	13,49707	
	-	3,32089	3,32132	3,32269	6,69017	6,69157	6,69289	6,69458	13,49670	13,49659	13,49670	13,49707	
	-	3,32086	3,32131	3,32267	6,69032	6,69165	6,69290	6,69454	13,49624	13,49651	13,49667	13,49706	
	-	3,32087	3,32132	3,32267	6,69029	6,69165	6,69290	6,69459	13,49656	13,49661	13,49669	13,49702	
	-	3,32088	3,32131	3,32267	6,69017	6,69160	6,69289	6,69460	13,49681	13,49664	13,49669	13,49707	
	-	3,32088	3,32131	3,32269	6,69013	6,69165	6,69289	6,69458	13,49684	13,49664	13,49669	13,49706	
	-	3,32089	3,32132	3,32267	6,69005	6,69165	6,69289	6,69454	13,49675	13,49663	13,49669	13,49704	
\overline{T}_{2-1} , мкс	-	3,32089	3,32131	3,32268	6,69021	6,69160	6,69289	6,69458	13,49683	13,49663	13,49669	13,49702	
<i>t</i> , °C	-	19,3	19,7	19,4	20,2	20,1	19,6	21,0	19,9	19,5	19,5	21,0	
k_t , m/(c·°C)		0	,5		0,5				0,7				
С _t , м/с	-	5966,64	5965,90	5963,42	5965,43	5964,20	5963,04	5961,54	5935,04	5935,06	5935,03	5934,88	
С ₂₀ , м/с	-	5966,99	5966,05	5963,72	5965,33	5964,15	5963,24	5961,04	5935,11	5935,41	5935,38	5934,18	
и (С ₂₀), м/с	-	0,83	0,83	0,83	0,74	0,74	0,74	0,75	0,70	0,70	0,70	0,70	

Таблица 7.3.2 – Результаты измерений для образцов №1, №2 и №3 (без смещения преобразователя относительно оси образца)

Параметр	Обр	оазец №4 С	стекло БК8	<u>№</u> 1	Образец №5 Сталь 40Х13 №2				Образец №6 Сталь 40Х13 №1			
F , МГц	2,3	4,5	8,5	12	2,3	4,5	8,5	12	2,3	4,5	8,5	12
	7,00890	7,01286	7,01342	7,01373	3,60801	3,60912	3,60980	-	7,05298	7,05457	7,05468	7,05757
	7,00892	7,01282	7,01345	7,01383	3,60804	3,60912	3,60980	-	7,05298	7,05456	7,05464	7,05757
	7,00892	7,01284	7,01347	7,01374	3,60801	3,60908	3,60980	-	7,05296	7,05456	7,05459	7,05754
	7,00896	7,01286	7,01344	7,01377	3,60798	3,60901	3,60980	-	7,05298	7,05463	7,05462	7,05763
	7,00889	7,01286	7,01344	7,01383	3,60806	3,60913	3,60980	-	7,05299	7,05458	7,05459	7,05764
T ^k Mice	7,00891	7,01285	7,01344	7,01385	3,60795	3,60906	3,60980	-	7,05301	7,05458	7,05462	7,05744
	7,00892	7,01287	7,01348	7,01374	3,60791	3,60915	3,60980	-	7,05297	7,05456	7,05464	7,05733
	7,00891	7,01286	7,01344	7,01382	3,60789	3,60913	3,60981	-	7,05297	7,05456	7,05457	7,05747
I_{2-1}, MKC	7,00892	7,01286	7,01343	7,01383	3,60788	3,60916	3,60980	-	7,05299	7,05451	7,05460	7,05738
	7,00893	7,01286	7,01344	7,01379	3,60810	3,60917	3,60980	-	7,05299	7,05459	7,05465	7,05739
	7,00889	7,01286	7,01344	7,01378	3,60806	3,60910	3,60980	-	7,05298	7,05459	7,05460	7,05752
	7,00890	7,01283	7,01346	7,01386	3,60803	3,60913	3,60980		7,05298	7,05451	7,05462	7,05746
	7,00890	7,01286	7,01346	7,01378	3,60811	3,60911	3,60979	-	7,05296	7,05450	7,05459	7,05747
	7,00890	7,01286	7,01343	7,01384	3,60808	3,60912	3,60979	-	7,05298	7,05457	7,05468	7,05744
	7,00900	7,01285	7,01343	7,01383	3,60810	3,60909	3,60982	-	7,05299	7,05458	7,05467	7,05768
	7,00898	7,01285	7,01344	7,01378	3,60831	3,60914	3,60982	-	7,05301	7,05456	7,05459	7,05745
\overline{T}_{2-1} , мкс	7,00892	7,01285	7,01345	7,01380	3,60824	3,60913	3,60980	-	7,05297	7,05458	7,05461	7,05753
<i>t</i> , °C	20,1	20,6	19,5	21,1	19,8	19,7	19,9	-	20,0	19,3	19,7	21,2
k _t , м/(с·°С)		()		-0,5				-0,5			
С _t , м/с	5714,36	5711,06	5710,57	5710,37	6007,30	6005,52	6004,38	-	6007,44	6006,10	6006,05	6003,60
С ₂₀ , м/с	5714,36	5711,06	5710,57	5710,37	6007,20	6005,37	6004,33	-	6007,44	6005,75	6005,90	6004,20
и (С ₂₀), м/с	0,70	0,70	0,70	0,70	0,83	0,83	0,83	-	0,75	0,75	0,75	1,08

Таблица 7.3.3 – Результаты измерений для образцов №4, №5 и №6 (без смещения оси преобразователя относительно оси образца)

7.3.7 Бюджеты неопределенности

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	9,9073	0,00015	А	нормальное	602,2 **	0,092
δd_s , мм	0	0,00074	В	прямоугольное	602,2 **	0,446
δd_p , мм	0	0,00000057	В	прямоугольное	602,2 **	0,0003
<i>Т_{j-i}</i> , мкс	3,32089	0,0000079	А	нормальное	-1796,7 ***	0,014
δT_s , мкс	0	0,0000048	В	прямоугольное	-1796,7 ***	0,009
δT_D , мкс	0	0,00038	В	прямоугольное	-1796,7 ***	0,689
20 - t, °C	0,7	0,037	В	прямоугольное	0,5 м/(с·°С)	0,019
<i>k</i> _t , м/(с [.] °С)	0,5	0,058	В	прямоугольное	0,7 °C	0,040
С, м/с	5966,64					
ΔC^* , м/с	0,35					
<i>C</i> ₂₀ , м/с	5966,99	суммарная		трапецеидальное		0,83

Обр	азен №	1. Квар	певое	стекло	КΒ	Nº05.	Частота	4.5	ΜΓιι
U U P	азец в п	IT ICDMP.	цевсе	•1•1010	1.10		1001010	.,.	1,11 14

*
 ΔC – поправка на ТКС

** Коэффициент чувствительности c(d) в мкс⁻¹, умноженный на 1000

*** Коэффициент чувствительности *c*(*T*) в мм·мкс⁻², умноженный на 1000

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	9,9073	0,00015	А	нормальное	602,2	0,092
δ <i>d</i> _s , мм	0	0,00074	В	прямоугольное	602,2	0,446
δd_p , мм	0	0,00000057	В	прямоугольное	602,2	0,0003
<i>Т_{j-i}</i> , мкс	3,32131	0,0000016	А	нормальное	-1796,2	0,003
δT_s , мкс	0	0,0000048	В	прямоугольное	-1796,2	0,009
δT_D , мкс	0	0,00038	В	прямоугольное	-1796,2	0,689
20 - t, °C	0,3	0,037	В	прямоугольное	0,5 м/(с·°С)	0,019
k_t , м/(с·°С)	0,5	0,058	В	прямоугольное	0,3 °C	0,017
С, м/с	5965,90					
ΔC , м/с	0,15					
<i>C</i> ₂₀ , м/с	5966,05	суммарная		трапецеидальное		0,83

Образец № 1. Кварцевое стекло КВ №05. Частота 8,5 МГц

Образен №1	Квариевое стекло	KB №05	Частота	12 МГп
	Кварцевое стекло	\mathbf{RD} $\mathbf{M} = 0.5$.	1401014	12 тип ц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	9,9073	0,00015	А	нормальное	601,9	0,092
δd_s , мм	0	0,00074	В	прямоугольное	601,9	0,446
δd_p , мм	0	0,00000057	В	прямоугольное	601,9	0,0003
<i>Т_{j-i}</i> , мкс	3,32268	0,0000028	А	нормальное	-1794,8	0,005
δT_s , мкс	0	0,0000048	В	прямоугольное	-1794,8	0,009
δT_D , мкс	0	0,00038	В	прямоугольное	-1794,8	0,689
20 - t, °C	0,6	0,037	В	прямоугольное	0,5 м/(с·°С)	0,019
<i>k</i> _t , м/(с [.] °С)	0,5	0,058	В	прямоугольное	0,6 °C	0,035
С, м/с	5963,42					
ΔC , м/с	0,30					
<i>C</i> ₂₀ , м/с	5963,72	суммарная		трапецеидальное		0,83

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	19,9550	0,00049	А	нормальное	298,9	0,148
δd_s , мм	0	0,00079	В	прямоугольное	298,9	0,236
δd_p , мм	0	0,0000012	В	прямоугольное	298,9	0,0003
<i>Т_{j-i}</i> , мкс	6,69021	0,000024	А	нормальное	-891,7	0,022
δT_s , мкс	0	0,000010	В	прямоугольное	-891,7	0,009
δT_D , мкс	0	0,00077	В	прямоугольное	-891,7	0,689
20 - t, °C	-0,2	0,037	В	прямоугольное	0,5 м/(с·°С)	0,019
k_t , м/(с·°С)	0,5	0,058	В	прямоугольное	-0,2 °C	0,012
С, м/с	5965,43					
ΔC , м/с	-0,10					
<i>C</i> ₂₀ , м/с	5965,33	суммарная		прямоугольное		0,74

Образец № 2. Кварцевое стекло КВ №05. Частота 2,25 МГц

Образец № 2. Кварцевое стекло КВ №05. Частота 4,5 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	19,955	0,00049	А	нормальное	298,9	0,148
δd_s , мм	0	0,00079	В	прямоугольное	298,9	0,236
δd_p , мм	0	0,0000012	В	прямоугольное	298,9	0,0003
<i>Т_{j-i}</i> , мкс	6,6916	0,000086	А	нормальное	-891,3	0,008
δT_s , мкс	0	0,000010	В	прямоугольное	-891,3	0,009
δT_D , мкс	0	0,00077	В	прямоугольное	-891,3	0,689
20 - t, °C	-0,1	0,037	В	прямоугольное	0,5 м/(с·°С)	0,019
<i>k</i> _t , м/(с [.] °С)	0,5	0,058	В	прямоугольное	-0,1 °C	0,006
С, м/с	5964,20					
ΔC , м/с	-0,05					
<i>C</i> ₂₀ , м/с	5964,15	суммарная		прямоугольное		0,74

Образец № 2. Кварцевое стекло КВ №05. Частота 8,5 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	19,9550	0,00049	А	нормальное	298,8	0,148
δd_s , мм	0	0,00079	В	прямоугольное	298,8	0,236
δd_p , мм	0	0,0000012	В	прямоугольное	298,8	0,0003
<i>Т_{j-i}</i> , мкс	6,69289	0,0000084	А	нормальное	-891,0	0,001
δT_s , мкс	0	0,000010	В	прямоугольное	-891,0	0,009
δT_D , мкс	0	0,00077	В	прямоугольное	-891,0	0,689
20 - t, °C	0,4	0,037	В	прямоугольное	0,5 м/(с·°С)	0,019
<i>k</i> _t , м/(с·°С)	0,5	0,058	В	прямоугольное	0,4 °C	0,023
С, м/с	5963,04					
ΔC , м/с	0,20					
<i>C</i> ₂₀ , м/с	5963,24	суммарная		прямоугольное		0,74

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	19,9550	0,00049	А	нормальное	298,7	0,148
δd_s , мм	0	0,00079	В	прямоугольное	298,7	0,236
δd_p , мм	0	0,0000012	В	прямоугольное	298,7	0,0003
<i>Т_{j-i}</i> , мкс	6,69458	0,0000081	А	нормальное	-890,5	0,007
δT_s , мкс	0	0,000010	В	прямоугольное	-890,5	0,009
δT_D , мкс	0	0,00077	В	прямоугольное	-890,5	0,688
20 - t, °C	-1	0,037	В	прямоугольное	0,5 м/(с·°С)	0,019
k_t , м/(с·°С)	0,5	0,058	В	прямоугольное	-1,0 °C	0,058
С, м/с	5961,54					
ΔC , м/с	-0,50					
<i>C</i> ₂₀ , м/с	5961,04	суммарная		прямоугольное		0,74

Образец № 2. Кварцевое стекло КВ №05. Частота 12 МГц

Образец № 3. Кварцевое стекло КУ-1№1. Частота 2,25 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	40,0516	0,00016	А	нормальное	148,2	0,024
δd_s , мм	0	0,00089	В	прямоугольное	148,2	0,131
δd_p , мм	0	0,0000023	В	прямоугольное	148,2	0,0003
<i>Т_{j-i}</i> , мкс	13,4968	0,000049	А	нормальное	-439,7	0,021
δT_s , мкс	0	0,000019	В	прямоугольное	-439,7	0,009
δT_D , мкс	0	0,0016	В	прямоугольное	-439,7	0,685
20 - t, °C	0,1	0,037	В	прямоугольное	0,7 м/(с·°С)	0,026
<i>k</i> _t , м/(с [.] °С)	0,7	0,058	В	прямоугольное	0,1 °C	0,006
С, м/с	5935,04					
ΔC , м/с	0,07					
<i>C</i> ₂₀ , м/с	5935,11	суммарная		прямоугольное		0,70

Образец № 3. Кварцевое стекло КУ-1№1. Частота 4,5 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	40,0516	0,00016	А	нормальное	148,2	0,024
δd_s , мм	0	0,00089	В	прямоугольное	148,2	0,131
δd_p , мм	0	0,0000023	В	прямоугольное	148,2	0,0003
<i>Т_{j-i}</i> , мкс	13,4966	0,000025	А	нормальное	-439,7	0,011
δT_s , мкс	0	0,000019	В	прямоугольное	-439,7	0,009
δT_D , мкс	0	0,0016	В	прямоугольное	-439,7	0,685
20 - t, °C	0,5	0,037	В	прямоугольное	0,7 м/(с·°С)	0,026
<i>k</i> _t , м/(с·°С)	0,7	0,058	В	прямоугольное	0,5 °C	0,029
С, м/с	5935,05					
ΔC , м/с	0,35					
<i>C</i> ₂₀ , м/с	5935,40	суммарная		прямоугольное		0,70

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	40,0516	0,00016	А	нормальное	148,2	0,024
δ <i>ds</i> , мм	0	0,00089	В	прямоугольное	148,2	0,131
δd_p , мм	0	0,0000023	В	прямоугольное	148,2	0,0003
<i>Т_{j-i}</i> , мкс	13,4967	0,0000023	А	нормальное	-439,7	0,001
δT_s , мкс	0	0,000019	В	прямоугольное	-439,7	0,009
δT_D , мкс	0	0,0016	В	прямоугольное	-439,7	0,685
20 - t, °C	0,5	0,037	В	прямоугольное	0,7 м/(с·°С)	0,026
k_t , м/(с·°С)	0,7	0,058	В	прямоугольное	0,5 °C	0,029
С, м/с	5935,03					
ΔC , м/с	0,35					
<i>C</i> ₂₀ , м/с	5935,38	суммарная		прямоугольное		0,70

Образец № 3. Кварцевое стекло КУ-1№1. Частота 8,5 МГц

Образец № 3. Кварцевое стекло КУ-1№1. Частота 12 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	40,0516	0,00016	А	нормальное	148,2	0,024
δd_s , мм	0	0,00089	В	прямоугольное	148,2	0,131
δd_p , мм	0	0,0000023	В	прямоугольное	148,2	0,0003
<i>Т_{j-i}</i> , мкс	13,4970	0,0000087	А	нормальное	-439,7	0,004
δT_s , мкс	0	0,000019	В	прямоугольное	-439,7	0,009
δT_D , мкс	0	0,0016	В	прямоугольное	-439,7	0,685
20 - t, °C	-1	0,037	В	прямоугольное	0,7 м/(с·°С)	0,026
<i>k</i> _t , м/(с [.] °С)	0,7	0,058	В	прямоугольное	-1,0 °C	0,058
С, м/с	5934,88					
ΔC , м/с	-0,70					
<i>C</i> ₂₀ , м/с	5934,18	суммарная		прямоугольное		0,70

Образец № 4. Стекло БК8№1. Частота 2,25 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	20,0254	0,00016	А	нормальное	285,4	0,047
δd_s , мм	0	0,00079	В	прямоугольное	285,4	0,225
δd_p , мм	0	0,0000012	В	прямоугольное	285,4	0,0003
<i>Т_{j-i}</i> , мкс	7,00892	0,0000076	А	нормальное	-815,3	0,006
δT_s , мкс	0	0,000040	В	прямоугольное	-815,3	0,033
δT_D , мкс	0	0,00081	В	прямоугольное	-815,3	0,660
<i>C</i> ₂₀ , м/с	5714,36	суммарная		прямоугольное		0,70

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	20,0254	0,00016	A	нормальное	285,2	0,047
δ <i>ds</i> , мм	0	0,00079	В	прямоугольное	285,2	0,225
δd_p , мм	0	0,0000012	В	прямоугольное	285,2	0,0003
<i>Т_{j-i}</i> , мкс	7,01285	0,0000029	А	нормальное	-814,4	0,002
δT_s , мкс	0	0,000040	В	прямоугольное	-814,4	0,033
δT_D , мкс	0	0,00081	В	прямоугольное	-814,4	0,659
<i>C</i> ₂₀ , м/с	5711,06	суммарная		прямоугольное		0,70

Образец № 4. Стекло БК8№1. Частота 4,5 МГц

Образец № 4. Стекло БК8№1. Частота 8,5 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	20,0254	0,00016	А	нормальное	285,2	0,047
δ <i>d</i> _s , мм	0	0,00079	В	прямоугольное	285,2	0,225
δd_p , мм	0	0,0000012	В	прямоугольное	285,2	0,0003
<i>Т_{j-i}</i> , мкс	7,01345	0,0000050	А	нормальное	-814,2	0,004
δT_s , мкс	0	0,000040	В	прямоугольное	-814,2	0,033
δT_D , мкс	0	0,00081	В	прямоугольное	-814,2	0,659
<i>C</i> ₂₀ , м/с	5710,57	суммарная		прямоугольное		0,70

Образец № 4. Стекло БК8№1. Частота 12 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	20,0254	0,00016	А	нормальное	285,2	0,047
δd_s , мм	0	0,00079	В	прямоугольное	285,2	0,225
δd_p , мм	0	0,0000012	В	прямоугольное	285,2	0,0003
<i>Т_{j-i}</i> , мкс	7,0138	0,0000099	А	нормальное	-814,2	0,008
δT_s , мкс	0	0,000040	В	прямоугольное	-814,2	0,033
δT_D , мкс	0	0,00081	В	прямоугольное	-814,2	0,659
<i>C</i> ₂₀ , м/с	5710,37	суммарная		прямоугольное		0,70

Образец №5. Сталь 40Х13 №2. Частота 2,25 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	10,8373	0,00030	А	нормальное	554,3	0,166
δd_s , мм	0	0,00074	В	прямоугольное	554,3	0,413
δd_p , мм	0	0,0000063	В	прямоугольное	554,3	0,0003
<i>Т_{j-i}</i> , мкс	3,60824	0,000027	А	нормальное	-1665,0	0,045
δT_s , мкс	0	0,0000052	В	прямоугольное	-1665,0	0,009
δT_D , мкс	0	0,00042	В	прямоугольное	-1665,0	0,694
20 - t, °C	0,2	0,037	В	прямоугольное	-0,5 м/(с·°С)	0,019
<i>k</i> _t , м/(с·°С)	-0,5	0,058	В	прямоугольное	0,2 °C	0,012
С, м/с	6007,30					
Δ <i>C</i> , м/с	-0,10					
<i>C</i> ₂₀ , м/с	6007,20	суммарная		трапецеидальное		0,83

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	10,8373	0,00030	А	нормальное	554,2	0,166
δ <i>ds</i> , мм	0	0,00074	В	прямоугольное	554,2	0,413
δd_p , мм	0	0,0000063	В	прямоугольное	554,2	0,0003
<i>Т_{j-i}</i> , мкс	3,60913	0,0000094	А	нормальное	-1664,0	0,016
δT_s , мкс	0	0,0000052	В	прямоугольное	-1664,0	0,009
δT_D , мкс	0	0,00042	В	прямоугольное	-1664,0	0,693
20 - t, °C	0,3	0,037	В	прямоугольное	-0,5 м/(с·°С)	0,019
k_t , м/(с·°С)	-0,5	0,058	В	прямоугольное	0,3 °C	0,017
С, м/с	6005,52					
ΔC , м/с	-0,15					
<i>C</i> ₂₀ , м/с	6005,37	суммарная		трапецеидальное		0,82

Образец №5. Сталь 40Х13 №2. Частота 4,5 МГц

Образец №5. Сталь 40Х13 №2. Частота 8,5 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	10,8373	0,00030	А	нормальное	554,0	0,166
δd_s , мм	0	0,00074	В	прямоугольное	554,0	0,413
δd_p , мм	0	0,0000063	В	прямоугольное	554,0	0,0003
<i>Т_{j-i}</i> , мкс	3,6098	0,0000016	А	нормальное	-1663,4	0,003
δT_s , мкс	0	0,0000052	В	прямоугольное	-1663,4	0,009
δT_D , мкс	0	0,00042	В	прямоугольное	-1663,4	0,693
20 - t, °C	0,1	0,037	В	прямоугольное	-0,5 м/(с·°С)	0,019
<i>k</i> _t , м/(с [.] °С)	-0,5	0,058	В	прямоугольное	0,1 °C	0,006
С, м/с	6004,38					
ΔC , м/с	-0,05					
<i>C</i> ₂₀ , м/с	6004,33	суммарная		трапецеидальное		0,83

Образец №6 . Сталь 40Х13 №1.Частота 2,25 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	21,1852	0,00049	А	нормальное	283,6	0,139
δd_s , мм	0	0,00079	В	прямоугольное	283,6	0,225
δd_p , мм	0	0,0000012	В	прямоугольное	283,6	0,0003
<i>Т_{j-i}</i> , мкс	7,05297	0,0000033	А	нормальное	-851,8	0,003
δT_s , мкс	0	0,000010	В	прямоугольное	-851,8	0,009
δT_D , мкс	0	0,00081	В	прямоугольное	-851,8	0,694
20 - t, °C	0	0,037	В	прямоугольное	-0,5 м/(с·°С)	0,019
<i>k</i> _t , м/(с·°С)	-0,5	0,058	В	прямоугольное	0 °C	0
С, м/с	6007,44					
ΔC , м/с	0,00					
<i>C</i> ₂₀ , м/с	6007,44	суммарная		прямоугольное		0,75

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	21,1852	0,00049	А	нормальное	283,5	0,139
δd_s , мм	0	0,00079	В	прямоугольное	283,5	0,225
δd_p , мм	0	0,0000012	В	прямоугольное	283,5	0,0003
<i>Т_{j-i}</i> , мкс	7,05458	0,0000078	А	нормальное	-851,4	0,007
δT_s , мкс	0	0,000010	В	прямоугольное	-851,4	0,009
δT_D , мкс	0	0,00081	В	прямоугольное	-851,4	0,694
20 - t, °C	0,7	0,037	В	прямоугольное	-0,5 м/(с·°С)	0,019
k_t , м/(с·°С)	-0,5	0,058	В	прямоугольное	0,7 °C	0,040
С, м/с	6006,10					
ΔC , м/с	-0,35					
<i>C</i> ₂₀ , м/с	6005,75	суммарная		прямоугольное		0,75

Образец №6. Сталь 40Х13 №1. Частота 4,5 МГц

Образец №6. Сталь 40Х13 №1. Частота 8,5 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	21,1852	0,00049	А	нормальное	283,5	0,139
δ <i>d</i> _s , мм	0	0,00079	В	прямоугольное	283,5	0,225
δd_p , мм	0	0,0000012	В	прямоугольное	283,5	0,0003
<i>Т_{j-i}</i> , мкс	7,05461	0,0000081	А	нормальное	-851,4	0,007
δT_s , мкс	0	0,000010	В	прямоугольное	-851,4	0,009
δT_D , мкс	0	0,00081	В	прямоугольное	-851,4	0,694
20 - t, °C	0,3	0,037	В	прямоугольное	-0,5 м/(с·°С)	0,019
k_t , м/(с·°С)	-0,5	0,058	В	прямоугольное	0,3 °C	0,017
С, м/с	6006,05					
ΔC , м/с	-0,15					
<i>C</i> ₂₀ , м/с	6005,90	суммарная		прямоугольное		0,75

Образец №6. Сталь 40Х13 №1. Частота 12 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	21,1852	0,00049	А	нормальное	283,4	0,139
δd_s , мм	0	0,00079	В	прямоугольное	283,4	0,225
δd_p , мм	0	0,0000012	В	прямоугольное	283,4	0,0003
<i>Т_{j-i}</i> , мкс	7,05753	0,000024	А	нормальное	-850,7	0,020
δT_s , мкс	0	0,000010	В	прямоугольное	-850,7	0,009
δT_D , мкс	0	0,0012	В	прямоугольное	-850,7	1,040
20 - t, °C	-1,2	0,037	В	прямоугольное	-0,5 м/(с·°С)	0,019
<i>k</i> _t , м/(с·°С)	-0,5	0,058	В	прямоугольное	-1,2 °C	0,069
С, м/с	6003,60					
ΔC , м/с	0,60					
<i>C</i> ₂₀ , м/с	6004,20	суммарная		прямоугольное		0,83

7.3.8 Бюджеты неопределенности на частоте 10 МГц с учетом частотной поправки ΔC_F

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	9,9073	0,00015	А	нормальное	602,2	0,092
δ <i>ds</i> , мм	0	0,00074	В	прямоугольное	602,2	0,446
δd_p , мм	0	0,0000057	В	прямоугольное	602,2	0,0003
<i>Т_{j-i}</i> , мкс	3,32131	0,0000016	А	нормальное	-1796,2	0,003
δT_s , мкс	0	0,0000048	В	прямоугольное	-1796,2	0,009
δT_D , мкс	0	0,00038	В	прямоугольное	-1796,2	0,689
20 - t, °C	0,3	0,037	В	прямоугольное	0,5 м/(с·°С)	0,019
k_t , м/(с·°С)	0,5	0,058	В	прямоугольное	0,3 °C	0,017
ΔC_F , м/с	-1,0	0,83	В	трапецеидальное	1	0,830
$C_{20}^{F=8,5 \text{ M}\Gamma \mu}, \text{ M/c}$	5966,05					
$C_{20}^{F=10 \text{ MGu}}, \text{ M/c}$	5965,1	суммарная		нормальное		1,2

Образец № 1. Кварцевое стекло КВ №05. Частота 10 МГц

Образец № 2. Кварцевое	стекло КВ №05.	Частота 10 МГц
------------------------	----------------	----------------

Величина	Оценка	Стандартная	Стандартная Тип Ј		Коэффициент	Вклад	
		неопределен-	неопреде-		чувствительности	неопределенности,	
		ность	ленности			м/с	
<i>d</i> , мм	19,9550	0,00049	А	нормальное	298,8	0,148	
δd_s , мм	0	0,00079	В	прямоугольное	298,8	0,236	
δd_p , мм	0	0,0000012	В	прямоугольное	298,8	0,0003	
<i>Т_{j-i}</i> , мкс	6,69289	0,0000084	А	нормальное	-891,0	0,001	
δT_s , мкс	0	0,000010	В	прямоугольное	-891,0	0,009	
δT_D , мкс	0	0,00077	В	прямоугольное	-891,0	0,689	
20 - t, °C	0,4	0,037	В	прямоугольное	0,5 м/(с·°С)	0,019	
k_t , м/(с·°С)	0,5	0,058	В	прямоугольное	0,4 °C	0,023	
ΔC_F , м/с	-0,95	0,74	В	прямоугольное	1	0,740	
$C_{20}^{F=8,5 \text{ M}\Gamma \mu}, \text{ M/c}$	5963,24						
$C_{20}^{F=10 \text{ MGm}}, \text{ M/c}$	5962,3	суммарная		нормальное		1,1	

Образец № 3. Кварцевое стекло К	КУ-1№1. Частота 10 МГц
---------------------------------	------------------------

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	40,0516	0,00016	А	нормальное	148,2	0,024
δd_s , мм	0	0,00089	В	прямоугольное	148,2	0,131
δd_p , мм	0	0,0000023	В	прямоугольное	148,2	0,0003
<i>Т_{j-i}</i> , мкс	13,4967	0,0000023	А	нормальное	-439,7	0,001
δT_s , мкс	0	0,000019	В	прямоугольное	-439,7	0,009
δT_D , мкс	0	0,0016	В	прямоугольное	-439,7	0,685
20 − <i>t</i> , °C	0,5	0,037	В	прямоугольное	0,7 м/(с·°С)	0,026
k_t , м/(с [.] °С)	0,7	0,058	В	прямоугольное	0,5 °C	0,029
ΔC_F , м/с	-0,5	0,7	В	прямоугольное	1	0,700
$C_{20}^{F=8,5 \text{ M}\Gamma \mu}, \text{ M/c}$	5935,38					
$C_{20}^{F=10 \text{ MGu}}, \text{ M/c}$	5934,9	суммарная		нормальное		1,0

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	20,0254	0,00016	А	нормальное	285,2	0,047
δd_s , мм	0	0,00079	В	прямоугольное	285,2	0,225
δd_p , мм	0	0,0000012	В	прямоугольное	285,2	0,0003
<i>Т_{j-i}</i> , мкс	7,01345	0,0000050	А	нормальное	-814,2	0,004
δT_s , мкс	0	0,000040	В	прямоугольное	-814,2	0,033
δT_D , мкс	0	0,00081	В	прямоугольное	-814,2	0,659
ΔC_F , м/с	-0,25	0,7	В	прямоугольное	1	0,700
$C_{20}^{F=8,5 \text{ M}\Gamma \mu}, \text{ M/c}$	5710,57					
$C_{20}^{F=10 \text{ MGm}}, \text{ M/c}$	5710,3	суммарная		нормальное		1,0

Образец № 4. Стекло БК8№1. Частота 10 МГц

Образец №5. Сталь 40Х13 №2. Частота 10 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад	
		неопределен-	неопреде-		чувствительности	неопределенности,	
		ность	ленности			м/с	
<i>d</i> , мм	10,8373	0,00030	А	нормальное	554,0	0,166	
δd_s , мм	0	0,00074	В	прямоугольное	554,0	0,413	
δ <i>d_p</i> , мм	0	0,0000063	В	прямоугольное	554,0	0,0003	
<i>Т_{j-i}</i> , мкс	3,6098	0,0000016	А	нормальное	-1663,4	0,003	
δT_s , мкс	0	0,0000052	В	прямоугольное	-1663,4	0,009	
δT_D , мкс	0	0,00042	В	прямоугольное	-1663,4	0,693	
20 - t, ⁰ C	0,1	0,037	В	прямоугольное	-0,5 м/(с·°С)	0,019	
k_t , м/(с·°С)	-0,5	0,058	В	прямоугольное	0,1 °C	0,006	
ΔC_F , м/с	-0,75	0,83	В	трапецеидальное	1	0,830	
$C_{20}^{F=8,5 \text{ M}\Gamma \mu}, \text{ M/c}$	6004,33						
$C_{20}^{F=10 \text{ MGm}}, \text{ M/c}$	6003,6	суммарная		прямоугольное		1,2	

Образец №6. Сталь 40Х13 №1. Частота 10 МГц

Величина	Оценка	Стандартная	Тип	Распределение	Коэффициент	Вклад
		неопределен-	неопреде-		чувствительности	неопределенности,
		ность	ленности			м/с
<i>d</i> , мм	21,1852	0,00049	А	нормальное	283,5	0,139
δd_s , мм	0	0,00079	В	прямоугольное	283,5	0,225
δd_p , мм	0	0,0000012	В	прямоугольное	283,5	0,0003
<i>Т_{j-i}</i> , мкс	7,05461	0,0000081	А	нормальное	-851,4	0,007
δT_s , мкс	0	0,000010	В	прямоугольное	-851,4	0,009
δT_D , мкс	0	0,00081	В	прямоугольное	-851,4	0,694
20 - t, ⁰ C	0,3	0,037	В	прямоугольное	-0,5 м/(с·°С)	0,019
k_t , м/(с·°С)	-0,5	0,058	В	прямоугольное	0,3 °C	0,017
ΔC_F , м/с	-0,75	0,75	В	прямоугольное	1	0,750
$C_{20}^{F=8,5 \text{ MGu}}, \text{ M/c}$	6005,9					
$C_{20}^{F=10 \text{ MFq}}, \text{ M/c}$	6005,2	суммарная		нормальное		1,1

7.4 Результаты измерений, представленные ГП «Днепрстандартметрология», Украина

7.4.1 Наименование, тип и номер эталонов, используемых для измерения толщины образца и скорости распространения продольных ультразвуковых волн

- индикатор с цифровым отсчетом ИЧЦ-15 № 312-001-002, *U* = (0,001 - 0,002) мм;

- меры длины концевые плоскопараллельные \mathbb{N} 43920, U = (0,039 - 0,045) мкм;

- установка для измерения скорости ультразвука в твердых материалах УИСУ-01 N_{2} 2, $U = (1 + 0.000015 \times T)$ нс.

Все используемые эталоны имеют прослеживаемость до ГП «Укрметртестстандарт».

7.4.2 Условия измерений

Температура окружающего воздуха при измерениях толщины 20 ± 0.5 °C.

Температура воды в иммерсионной ванне при измерениях времени 20 ± 0.5 °C.

Измерения температуры осуществляются при помощи термометра ртутного лабораторного ТЛ-4. Расширенная неопределенность измерений U = (0,12 - 0,13) °C.

В связи с незначительным отличием температуры при проведении измерений от номинальных значений, решено поправку на температурную зависимость скорости продольных ультразвуковых волн не рассматривать.

7.4.3 Описание эталона, методика выполнения измерений скорости (времени) распространения продольных ультразвуковых волн

Для измерения скорости (времени) распространения продольных ультразвуковых волн применяется установка для измерения скорости ультразвука в твердых материалах УИСУ-01 №2, производства Украинского научно-исследовательского института неразрушающего контроля. Установка УИСУ-01 состоит из микробассейна с системой закрепления и позиционирования пьезоэлектрического преобразователя, механической системы закрепления образца, приемо-излучающего устройства с преобразователями и программно-вычислительного блока. Установка УИСУ-01 использует иммерсионный пьезоэлектрический метод возбуждения и регистрации ультразвука, импульсный метод измерений скорости распространения ультразвуковых волн.

7.4.4 Модель измерений

Модель проведения измерений скорости распространения продольных ультразвуковых волн в твёрдых средах импульсным методом имеет вид:

$$C = 2 \cdot 1000 \cdot (j-i) \cdot \frac{d + \delta d_s + \delta d_p}{T_{i-j} + \delta T_s + \delta T_D}, \qquad (7.4.1)$$

где

С – скорость продольных ультразвуковых колебаний в образце, м/с;

i, j – номера отчетных импульсов, причём j > i;

d – измеренная толщина образца, мм;

 Δd_s – поправка, связанная со средствами измерительной техники (СИТ), которыми проводились измерения линейных размеров образца, мм;

 Δd_p - поправка, обусловленная непараллельностью граней образца, мм;

*Т*_{*i*-*i*} - измеренный интервал времени, мкс;

∆T^{*s*} - поправка, связанная с СИТ, которыми проводились измерения интервалов времени

между *i*-м и *j*-м импульсами, мкс;

*∆Т*_{*D*} - дифракционная поправка, мкс.

7.4.5 Определение составляющих суммарной стандартной неопределенности измерений и поправок

7.4.5.1 Анализ источников неопределенностей

Анализ источников неопределенностей и их расчёт приведён в таблице 7.4.1.

$1 a \beta \pi u \mu a / 4 = A \mu a \pi u a$	источников неоп	пелепенностеи и	их пасчет
Tuominga /. I.I. Imami	nero mintob neon	пределениюетен и	ma pue lei

Входящая величина	Описание
d	Тип неопределенности: А.
измеренная толщина	Вид распределения: нормальный (Гаусса).
образца, мм	Значение оценки: $d = \frac{\sum_{i=1}^{n} d_i}{n}$, среднее арифметическое из $n = 10$
	измерений толщины.
	Стандартная неопределенность выражается в виде стандартного
	отклонения среднего арифметического значения результатов
	измерений:
	$u(d) = \sqrt{\frac{\sum_{i=1}^{n} (d_i - d)^2}{n \cdot (n-1)}} \text{ MM}$
Δd_s	Тип неопределенности: В.
поправка, связанная	Вид распределения: прямоугольный.
со средствами	\underline{a}
измерительной техники (СИТ), которыми проводились измерения линейных размеров образца, мм	Значение оценки: 0 мм с границами $\pm 2^{-}$, где <i>a</i> – расширенная неопределенность (границы абсолютной погрешности) индикатора ИЧЦ. Стандартная неопределенность оценивается по формуле: $u(\delta d_s) = \frac{a}{2\sqrt{3}} = \frac{0,002}{2\sqrt{3}}_{=0,0006 \text{ MM},}$ или, для измерений с использованием мер концевых, <i>a</i> – сумма расширенных неопределенностей (границ абсолютных погрешностей) индикатора ИЧЦ и меры концевой. $u(\delta d_s) = \frac{a}{2\sqrt{3}} = \frac{0,004}{2\sqrt{3}}_{=0,00116 \text{ MM}.}$
	Влияние стойки и температуры компенсируется методически (повторным контролем нуля индикатора ИЧЦ).

Продолжение таблицы 7.4.1

Входящая величина	Описание
Δd_p	Тип неопределенности: В.
поправка,	Вид распределения: прямоугольный.
обусловленная	а
непараллельностью	Значение оценки: 0 мм с границами $\pm \frac{1}{2}$, где <i>a</i> – расширенная
граней образца, мм;	неопределенность (границы абсолютной погрешности)
	индикатора ИЧЦ.
	Стандартная неопределенность оценивается по формуле:
	a = 0,002
	$u(\partial a_p) = \frac{1}{2\sqrt{3}} = \frac{1}{2\sqrt{3}} = 0.0006 \text{ MM}.$
Ti-i	Тип неопределенности: А.
измеренный интервал	Вил распределения: нормальный (Гаусса).
времени. мкс	n
2 p =	$\sum T_{i-j}^k$
	Значение оценки: $\overline{T}_{i-j} = \frac{k=1}{n}$, среднее арифметическое
	значение из $n = 10$ измерений интервалов времени.
	Стандартная неопределенность выражается в виде стандартного
	отклонения среднего арифметического значения результатов
	измерений:
	$u(T_{i-j}) = \sqrt{\frac{\sum_{k=1}^{n} (T_{i-j}^{k} - \overline{T}_{i-j})^{2}}{n(n-1)}}, \text{ MKC}$
ΔT_s	Тип неопределенности: В.
поправка, связанная с	Вид распределения: прямоугольный.
СИТ, которыми	Значение оценки: 0 мкс. Согласно проведенным производителем
проводились	УИСУ-01 совместно с ГП «Днепрстандартметрология» ранее
измерения интервалов	исследованиям, стандартную неопределенность оценивают по
времени между <i>і</i> -м и	формуле:
<i>j</i> -м импульсами, мкс	$0,035\% \cdot T_{i-i}$
	$u(\delta I_s) = \frac{1}{\sqrt{3}}$ MKC JUR PACTOTE 2.5 MCI
	гле 0.035 % – относительная погрешность измерения скорости на
	илеальном образие:
	$0.05\% \cdot T$
	$u(\delta T_s) = \sigma_s $
	где 0,05 % – относительная погрешность измерения скорости на
	идеальном образце;
	$0,06\% \cdot T_{i-i}$
	$u(oI_s) = \frac{1}{\sqrt{3}}$ мкс лля частоты 10 МГн.
	где 0.06 % – относительная погрешность измерения скорости на
	идеальном образце.

Продолжение таблицы 7.4.1

Входящая величина	Описание
ΔT_D	Тип оценивания неопределенности: В.
дифракционная	Вид распределения: прямоугольный.
поправка, мкс.	Значение оценки: 0 мкс с границами $\pm (0,0001 \cdot T_{i-j})$ мкс,
	где T_{i-j} – измеренный интервал времени, мкс
	(проведенные производителем УИСУ-01 совместно с ГП
	«Днепрстандартметрология» ранее исследования).
	Стандартную неопределенность оценивают по формуле:
	$u(\delta T_D) = \frac{0,0001 \cdot T_{i-j}}{\sqrt{3}}$ MKC.

В связи с незначительным отличием температуры при проведении измерений от номинальных значений, решено поправку на температурную зависимость скорости продольных ультразвуковых волн не рассматривать.

7.4.5.2 Корреляция

Исходные данные рассматриваются как некоррелированные.

7.4.5.3 Суммарная стандартная неопределенность

Суммарную стандартную неопределенность u(C), м/с вычисляют по формуле:

$$u(C) = \sqrt{\frac{(c(d) \cdot u(d))^{2} + (c(\delta d_{s}) \cdot u(\delta d_{s}))^{2} + (c(\delta d_{p}) \cdot u(\delta d_{p}))^{2} + (c(\delta T_{i-j}) \cdot u(T_{i-j}))^{2} + (c(\delta T_{s}) \cdot u(\delta T_{s}))^{2} + (c(\delta T_{D}) \cdot u(\delta T_{D}))^{2}},$$
(7.4.2)

где c(d), $c(\delta d_s)$, $c(\delta d_p)$ – коэффициенты чувствительности, которые связаны с измерением линейных размеров образца и находятся по формуле:

$$c(d) = c(\delta d_s) = c(\delta d_p) = \frac{2 \cdot 1000 \cdot (j-i)}{T_{i-j} + \delta T_s + \delta T_D},$$
(7.4.3)

 $c(T_{i-j}), c(\delta T_s), c(\delta T_D)$ – коэффициенты чувствительности, которые связаны с измерениями времени распространения УЗК в образце и находятся по формуле:

$$c(T_{i-j}) = c(\delta T_s) = c(\delta T_D) = -\frac{2 \cdot 1000 \cdot (j-i) \cdot (d+\delta d_s+\delta d_p)}{(T_{i-j}+\delta T_s+\delta T_D)^2}.$$
(7.4.4)

7.4.5.4 Расширенная неопределенность

Расширенная неопределенность *U*(*C*) вычисляется по формуле:

$$U(C) = k \cdot u(C) , \qquad (7.4.5)$$

где k = 2 – коэффициент охвата, который соответствует вероятности охвата 95 % в предположении нормального распределения измеряемой величины.

7.4.6 Результаты измерений толщины образцов

Результаты измерений толщины образцов представлены в таблице 7.4.2.

Номер образца	1	2	3	4	5	6
Материал и	Кварцевое стекло	Кварцевое стекло	Кварцевое стекло	Стекло БК8	Сталь 40Х13	Сталь 40Х13
обозначение образца	KB10№05	КВ 20№05	КУ-1 40№1	20№1	10№2	20№1
	9,911	19,950	40,045	20,017	10,842	21,180
	9,911	19,949	40,045	20,016	10,842	21,178
	9,910	19,949	40,045	20,017	10,842	21,180
	9,910	19,948	40,045	20,016	10,842	21,180
Результаты	9,910	19,948	40,045	20,016	10,841	21,178
измерений $d^{(k)}$, мм	9,910	19,949	40,045	20,016	10,842	21,180
	9,909	19,949	40,045	20,017	10,841	21,180
	9,909	19,948	40,046	20,017	10,841	21,178
	9,910	19,949	40,045	20,017	10,841	21,178
	9,910	19,949	40,045	20,016	10,841	21,178
Среднее						
арифметическое	9,9100	19,9488	40,0451	20,0165	10,8415	21,1790
значение \overline{d} , мм						
Стандартная						
неопределенность	0.0002	0.0002	0.0001	0.0002	0.0002	0.0003
измерений толщины	0,0002	0,0002	0,0001	0,0002	0,0002	0,0005
u(d), MM						

Таблица 7.4.2 – Результаты измерений толщины образцов

7.4.7 Результаты измерений времени распространения продольных ультразвуковых волн в образцах

Результаты измерений времени распространения продольных ультразвуковых волн в образцах приведены в таблицах 7.4.3-7.4.4.

Таблица 7.4	.3
-------------	----

Номер образца	1		2			3		
Материал и условное	Кварцевое стекло КВ		Кварцевое стекло КВ №05			Кварцевое стекло КУ-1 №1		
обозначение образца	N <u></u> 05							
Частота, МГц	5	10	2,5 5 10		2,5	5	10	
Измеренный интервал	3,3207	3,3223	6,6904	6,6910	6,6930	13,4924	13,4937	13,4933
времени T_{i-i}^k , мкс	3,3204	3,3223	6,6911	6,6913	6,6934	13,4914	13,4936	13,4939
	3,3203	3,3223	6,6903	6,6915	6,6935	13,4915	13,4936	13,4936
	3,3207	3,3223	6,6910	6,6910	6,6929	13,4921	13,4940	13,4936
	3,3204	3,3223	6,6903	6,6917	6,6928	13,4924	13,4946	13,4936
	3,3207	3,3223	6,6904	6,6910	6,6930	13,4924	13,4937	13,4933
	3,3204	3,3223	6,6911	6,6913	6,6934	13,4914	13,4936	13,4939
	3,3203	3,3223	6,6903	6,6915	6,6935	13,4915	13,4936	13,4936
	3,3207	3,3223	6,6910	6,6910	6,6929	13,4921	13,4940	13,4936
	3,3204	3,3223	6,6903	6,6917	6,6928	13,4924	13,4946	13,4936
Среднее								
арифметическое	3,32050	3,32216	6,69062	6,69130	6,69312	13,49196	13,49390	13,49360
значение \overline{T}_{i-j} , мкс								
Стандартная								
неопределенность	0,00006	0,00003	0,00012	0,00009	0,00009	0,00014	0,00013	0,00006
измерений $u(\overline{T}_{i-j})$, мкс								

Таблица 7.4.4

Номер образца	4		5		6			
Материал и условное обозначение образца	Стекло БК8 №1		Сталь 40Х13 10№2		Сталь 40Х13 20№2			
Частота, МГц	2,5 5 10		5	10	2,5	5	10	
Измеренный интервал	7,0096	7,0129	7,0139	3,6093	3,6122	7,0549	7,0564	7,0566
времени T_{i-i}^k , мкс	7,0100	7,0132	7,0143	3,6095	3,6122	7,0549	7,0564	7,0566
,	7,0103	7,0126	7,0143	3,6099	3,6122	7,0549	7,0564	7,0570
	7,0100	7,0126	7,0139	3,6088	3,6123	7,0547	7,0564	7,0570
	7,0093	7,0130	7,0139	3,6097	3,6120	7,0547	7,0564	7,0563
	7,0096	7,0129	7,0139	3,6093	3,6122	7,0549	7,0564	7,0566
	7,0100	7,0132	7,0143	3,6095	3,6122	7,0549	7,0564	7,0566
	7,0103	7,0126	7,0143	3,6099	3,6122	7,0549	7,0564	7,0570
	7,0100	7,0126	7,0139	3,6088	3,6123	7,0547	7,0564	7,0570
	7,0093	7,0130	7,0139	3,6097	3,6120	7,0547	7,0564	7,0563
Среднее арифметическое значение \overline{T}_{i-j} , мкс	7,00984	7,01286	7,01406	3,60944	3,61218	7,05482	7,05540	7,05670
Стандартная неопределенность измерений $u(\overline{T}_{i-j})$, мкс	0,00012	0,00008	0,00007	0,00013	0,00003	0,00003	0,00019	0,00009

7.4.8 Бюджеты неопределенности

Детальный бюджет неопределенности для каждого образца (отдельно для каждой частоты) с оценками составляющих неопределенности, значением скорости распространения продольных ультразвуковых волн и суммарной стандартной неопределенности измерений представлен в таблицах 7.4.5-7.4.7.

Номер	Величина	Оценка	Стандартная	Распреде-	Коэффициент	Вклад		
образца			неопределен-	ление	чувствительности	неопреде-		
Материал и			ность			ленности		
условное								
обозначение								
образца								
Образец № 2	d	19,9488	0,0002	нормальное	298,9	0,060		
Кварцевое	δd_s	0	0,0012	равномерное	298,9	0,359		
стекло КВ	δd_p	0	0,0012	равномерное	298,9	0,359		
20№05	T_{i-j}	6,69062	0,00012	нормальное	891,3	0,107		
	δT_s	0	0,00135	равномерное	891,3	1,203		
	δT_D	0	0,00039	равномерное	891,3	0,348		
	С, м/с	5963,21	Суммарная ст	андартная нео	пределенность, м/с	1,36		
Образец № 3	d	40,0451	0,0001	нормальное	148,2	0,015		
Кварцевое	δd_s	0	0,0012	равномерное	148,2	0,178		
стекло КУ-1	δd_p	0	0,0012	равномерное	148,2	0,178		
40№1	T_{i-j}	13,49196	0,00014	нормальное	440,0	0,062		
	δT_s	0	0,00273	равномерное	440,0	1,201		
	δT_D	0	0,00078	равномерное	440,0	0,343		
	С, м/с	5936,14	Суммарная ст	Суммарная стандартная неопределенность, м/с				
Образец № 4	d	20,0165	0,0002	нормальное	285,3	0,057		
Стекло БК8	δd_s	0	0,0012	равномерное	285,3	0,342		
20№1	δd_p	0	0,0012	равномерное	285,3	0,342		
	T_{i-j}	7,00984	0,00012	нормальное	814,7	0,098		
	δT_s	0	0,00142	равномерное	814,7	1,157		
	δT_D	0	0,00040	равномерное	814,7	0,326		
	С, м/с	5710,97	Суммарная ст	1,30				
Образец № 6	d	21,1790	0,0003	нормальное	283,5	0,085		
Сталь 40Х13	δd_s	0	0,0012	равномерное	283,5	0,340		
20№1	δd_p	0	0,0012	равномерное	283,5	0,340		
	T_{i-j}	7,05482	0,00003	нормальное	851,1	0,026		
	δT_s	0	0,00143	равномерное	851,1	1,217		
	δT_D	0	0,00041	равномерное	851,1	0,349		
	С, м/с	6004,12	Суммарная ст	гандартная нео	пределенность, м/с	1,36		

Таблица 7.4.5 – Бюджет неопределенности на частоте 2,5 МГц

Номер образца Материал и условное обозначение образца	Величина	Оценка	Стандартная неопределен- ность	Распреде- ление	Коэффициент чувствительности	Вклад неопреде- ленности
Образец № 1	d	9,9100	0,0002	нормальное	602,3	0,120
Кварцевое	δd_s	0	0,0006	равномерное	602,3	0,361
стекло КВ	δd_p	0	0,0006	равномерное	602,3	0,361
10 № 05	T_{i-j}	3,32050	0,00006	нормальное	1797,6	0,108
	δT_s	0	0,00096	равномерное	1797,6	1,726
	δT_D	0	0,00019	равномерное	1797,6	0,342
	С, м/с	5968,98	Суммарная ст	андартная нео	пределенность, м/с	1,84
Образец № 2	d	19,9488	0,0002	нормальное	298,9	0,060
Кварцевое	δd_s	0	0,0012	равномерное	298,9	0,359
стекло КВ	δd_p	0	0,0006	равномерное	298,9	0,179
20 № 05	T_{i-j}	6,69130	0,00009	нормальное	891,1	0,080
	δT_s	0	0,00193	равномерное	891,1	1,720
	δT_D	0	0,00039	равномерное	891,1	0,348
	С, м/с	5962,61	Суммарная ст	1,80		
Образец № 3	d	40,0451	0,0001	нормальное	148,2	0,015
Кварцевое	δd_s	0	0,0012	равномерное	148,2	0,178
стекло КУ-1	δd_p	0	0,0006	равномерное	148,2	0,089
40 № 1	T_{i-j}	13,49390	0,00013	нормальное	439,9	0,057
	δT_s	0	0,00390	равномерное	439,9	1,715
	δT_D	0	0,00078	равномерное	439,9	0,343
	С, м/с	5935,29	Суммарная ст	андартная нео	пределенность, м/с	1,76
Образец № 4	d	20,0165	0,0002	нормальное	285,2	0,057
Стекло БК8	δd_s	0	0,0012	равномерное	285,2	0,342
20№1	δd_p	0	0,0006	равномерное	285,2	0,171
	T_{i-j}	7,01286	0,00008	нормальное	814,0	0,065
	δT_s	0	0,00202	равномерное	814,0	1,644
	δT_D	0	0,00040	равномерное	814,0	0,326
	С, м/с	5708,51	Суммарная ст	андартная нео	пределенность, м/с	1,72
Образец № 5	d	10,8415	0,0002	нормальное	554,1	0,111
Сталь 40Х13	δd_s	0	0,0006	равномерное	554,1	0,332
10 № 2	δd_p	0	0,0006	равномерное	554,1	0,332
	T_{i-j}	3,60944	0,00013	нормальное	1664,3	0,216
	δT_s	0	0,00104	равномерное	1664,3	1,731
	δT_D	0	0,00021	равномерное	1664,3	0,350
	С, м/с	6007,30	Суммарная ст	андартная нео	пределенность, м/с	1,84
Образец № 6	d	21,1790	0,0003	нормальное	283,5	0,085
Сталь 40X13	δd_s	0	0,0012	равномерное	283,5	0,340
20№1	δd_p	0	0,0006	равномерное	283,5	0,170
	T_{i-j}	7,05540	0,00019	нормальное	850,9	0,162
	δT_s	0	0,00204	равномерное	850,9	1,736
	δT_D	0	0,00041	равномерное	850,9	0,349
	С, м/с	6003,63	Суммарная ст	андартная нео	пределенность, м/с	1,82

Таблица 7.4.6 – Бюджет неопределенности на частоте 5 МГц

Номер образиа	Величина	Оценка	Стандартная неопределен-	Распреде-	Коэффициент чувствительности	Вклад неопреде-
Материал и			ность	, i cini c	i j berbirrenbiro e i ii	ленности
условное						
обозначение						
образца	d	0.0100	0.0002		602.0	0.120
Крарцевое	u Sd	9,9100	0,0002	париомерное	602,0	0,120
стекло КВ	δd_s	0	0,0000	равномерное	602,0	0,301
10№05	$T_{i,i}$	3.32216	0.00003	нормальное	1795.8	0.054
	δT_s	0	0,00115	равномерное	1795,8	2,065
	δT_D	0	0,00019	равномерное	1795,8	0,341
	С, м/с	5966,00	Суммарная ст	андартная нео	пределенность, м/с	2,25
Образец № 2	d	19,9488	0,0002	нормальное	298,8	0,060
Кварцевое	δd_s	0	0,0012	равномерное	298,8	0,359
стекло КВ	δd_p	0	0,0012	равномерное	298,8	0,359
20№05	T_{i-j}	6,69312	0,00009	нормальное	890,6	0,080
	δT_s	0	0,00232	равномерное	890,6	2,066
	δT_D	0	0,00039	равномерное	890,6	0,347
	С, м/с	5960,99	Суммарная ст	андартная нео	пределенность, м/с	2,16
Образец № 3	d	40,0452	0,0001	нормальное	148,2	0,015
Кварцевое	δd_s	0	0,0012	равномерное	148,2	0,178
стекло КУ-1	δd_p	0	0,0012	равномерное	148,2	0,178
40 № 1	T_{i-j}	13,49360	0,00006	нормальное	439,9	0,026
	$\frac{\partial I_s}{ST}$	0	0,00467	равномерное	439,9	2,054
	$0I_D$	5025.44	0,00078	равномерное	439,9	0,545
Oppopou No 1	С, м/с	3933,44	Суммарная ст	андартная нео	пределенность, м/с 295 1	2,10
Стекло БК8	u Sd	20,0103	0,0002	париомерное	285,1	0,037
20№1	δd	0	0,0012	равномерное	285,1	0,342
200121	$T_{i,i}$	7.01406	0.00007	нормальное	813.7	0.057
	δT_s	0	0.00243	равномерное	813.7	1.977
	δT_D	0	0,00040	равномерное	813,7	0,325
	С, м/с	5707,54	Суммарная ст	андартная нео	пределенность, м/с	2,06
Образец № 5	d	10,8415	0,0002	Нормальное	553,7	0,111
Сталь 40Х13	δd_s	0	0,0006	равномерное	553,7	0,332
10№2	δd_p	0	0,0012	равномерное	553,7	0,664
	T_{i-i}	3,61218	0,00003	Нормальное	1661,8	0,050
	δT_s	0	0,00125	равномерное	1661,8	2,077
	δT_D	0	0,00021	равномерное	1661,8	0,349
	С, м/с	6002,75	Суммарная ст	андартная нео	пределенность, м/с	2,24
Образец № 6	d	21,1790	0,0003	нормальное	283,4	0,085
Сталь 40Х13	δd_s	0	0,0012	равномерное	283,4	0,340
20№1	δd_p	0	0,0012	равномерное	283,4	0,340
	T _{i-j}	7,05670	0,00009	нормальное	850,6	0,077
	δT_s	0	0,00244	равномерное	850,6	2,075
	δT_D	0	0,00041	равномерное	850,6	0,349
	С, м/с	6002,52	Суммарная ст	андартная нео	пределенность, м/с	2,16

Таблица 7.4.7 – Бюджет неопределенности на частоте 10 МГц

7.5 Результаты измерений, представленные ГП «Укрметртестстандарт», Украина

7.5.1 Наименование, тип и номер эталонов, используемых для измерения толщины образца и скорости распространения продольных ультразвуковых волн

Для измерений геометрических размеров образцов использовался следующий эталон – длинномер измерительный вертикальный ИЗВ-23 (далее – длинномер), заводской номер 770100;

Для измерений времени распространения ультразвуковых колебаний использовалась установка для измерения скорости продольных ультразвуковых колебаний в твердых телах УИСУ-01 (далее - установка), заводской номер 3.

7.5.2 Условия измерений

Температура окружающего воздуха ($21,0 \pm 2,0$) °С;

Температура воды в иммерсионной ванне установки УИСУ-01 (20,0 \pm 1) °С.

Измерения температуры окружающего воздуха осуществляются при помощи измерителя параметров воздуха «АТМОСФЕРА-1». Расширенная неопределенность при измерении температуры – 0,30 °C.

Измерения температуры воды в иммерсионной ванне установки осуществляются при помощи калибратора сигналов термоэлектрических преобразователей (далее – калибратор) «ГРАДІЄНТ-2002». Расширенная неопределенность при измерении температуры воды – 0,13 °С.

7.5.3 Описание эталона, методика выполнения измерений скорости (времени) распространения продольных ультразвуковых волн

Измерения времени распространения ультразвуковых колебаний (УЗК) в образцах следует проводить в соответствии с [2] следующим образом:

1) Установить преобразователь частотой 2,5 МГц. Поместить соответствующий образец в иммерсионную ванную установки, заполненную водой. При помощи калибратора провести измерения температуры воды.

2) Установить преобразователь вплотную к центру образца и провести предварительную настройку его положения. Расположить преобразователь на минимальном расстоянии от образца, при котором на рабочем экране установки наблюдается не менее четырех эхосигналов. Провести точную настройку положения преобразователя, при этом амплитуда эхосигналов, отображаемых на рабочем экране установки, должна быть максимальной.

3) При помощи органов управления установки ввести численное значение толщины образца и следующих параметров:

- частоты преобразователя;

- амплитуды, частоты и длительности зондирующего импульса,

- задержки, развертки и усиления эхо-сигналов, отображаемых на рабочем экране.

Отключить фильтр и усреднение сигналов, в качестве отсчетных точек при измерениях выбрать точки перехода из положительной в отрицательную область значений (или наоборот).

4) Выделить область, в которой находиться первый эхо-сигнал, стробом 1. Установить параметры отображения сигнала в стробе 1 (амплитуду, задержку и длительность) таким образом, чтобы эхо-сигнал полностью располагался в дополнительном окне и не наблюдалось искажений формы эхо-сигнала.
5) Аналогичным образом выделить второй эхо-сигнал стробом 2, органами управления установки установить его амплитуду и длительность равной амплитуде и длительности эхосигнала, отображаемого в стробе 1. При этом форма отображаемых эхо-сигналов должна совпадать.

6) Зафиксировать эхо-сигналы на рабочем экране установки.

В дополнительных окнах экрана выделить точки, в которых амплитуда эхо-сигналов равна нулю, причем эти точки должны находиться сразу за точкой максимума амплитуды эхосигнала. На экране установки отобразится результат измерения времени распространения УЗК в образце.

7) Провести 20 измерений, каждый раз производя переориентировку преобразователя.

8) Повторить операции для датчиков частотой 5 МГц и 10 МГц для всех соответствующих образцов, задействованных в сличениях.

7.5.4 Модель измерений

Модель измерений описывается формулой:

$$C_{20} = 2 \cdot 1000 \cdot \left(j-i\right) \cdot \frac{\left(d + \delta d_s + \delta d_p\right)}{\left(T_{i-j} + \delta T_s + \delta T_D\right)} + (20,0-t+\delta t) \cdot \left(k_t + \delta k_t\right), \tag{7.5.1}$$

где

C₂₀ − скорость продольных ультразвуковых колебаний в образце, приведенная к температуре 20 °C, м/с;

i, *j* – номера отсчетных импульсов;

d – измеренная толщина образца в зоне аттестации, мм;

 δd_s – поправка, связанная с длинномером, мм;

 δd_p – поправка, вызванная непараллельностью граней образца, мм;

 T_{i-i} – время распространение УЗК в образце, мкс;

 δT_s – поправка, связанная с установкой, мкс;

 δT_D – дифракционная поправка, мкс;

t – температура жидкости в иммерсионной ванне, °С;

 k_t – температурный коэффициент скорости (ТКС), м/(с·°С);

 δt – поправка, связанная с калибратором, °C;

 ∂k_t – поправка, связанная с ТКС, м/(с·°С);

Далее приведено описание всех входящих величин и связанных с ними составляющих стандартной неопределенности.

7.5.5 Определение составляющих суммарной стандартной неопределенности измерений и поправок

7.5.5.1 Измерение толщины образцов

Измерение толщины образца производилось в центре образца и девяти точках, равномерно расположенных на окружности радиусом примерно 30 мм.

Среднее арифметическое значение толщины \overline{d} , мм, рассчитывается по формуле:

$$\overline{d} = \frac{1}{11} \sum_{k=1}^{10} d^{(k)} , \qquad (7.5.2)$$

где $d^{(k)}$ – результат измерения толщины, мм; k – номер измерения.

Стандартное отклонение единичных измерений толщины s(d), мм, определяется по формуле:

$$s(d) = \sqrt{\frac{\sum_{k=1}^{m} (d^{(k)} - \overline{d})^2}{9}}.$$
(7.5.3)

Стандартная неопределенность измерений толщины u(d), мм, определяется по формуле:

$$u(d) = \frac{s(d)}{\sqrt{10}}$$
(7.5.4)

Распределение принимается нормальным.

7.5.5.2 Поправка, связанная с длинномером

Согласно сертификату калибровки длинномера, неопределенность измерения толщины образцов составляет 0,087 мкм.

Поправка, связанная с длинномером, принимается равной $\delta d_s = 0$ мм.

Распределение принимается нормальным.

7.5.5.3 Поправка, вызванная непараллельностью граней исследуемого образца

Непараллельность граней исследуемого образца приводит к изменению длины пути, пройденного ультразвуковым импульсом. Поскольку численное значение поправки, а также ее знак в общем случае оценить не представляется возможным, данная поправка принимается равной $\delta d_p = 0$ мм, а составляющая неопределенности, обусловленная непараллельностью граней образца, не учитывается (ввиду ее малости по сравнению с другими составляющими).

7.5.5.4 Измеренный временной интервал

Измерение временного интервала $T_{i\cdot j}$, мкс, проводилось при помощи установки УИСУ-1 иммерсионным способом по методике, описанной в разделе 7.5.3. Серия измерений включала в себя 20 измерений на каждом образце, перед каждым измерением производилась переориентировка преобразователя относительно акустической оси образца.

Среднее арифметическое значение временного интервала \overline{T}_{i-j} , мкс, рассчитывается по формуле:

$$\overline{T}_{i-j} = \frac{1}{20} \sum_{k=1}^{20} T_{i-j}^k , \qquad (7.5.5)$$

где T_{i-i}^k - результат измерения, мкс.

Стандартное отклонение единичных измерений $s(T_{i-i}^{k})$, мкс, определяется по формуле:

$$s(T_{i-j}^{k}) = \sqrt{\frac{\sum_{k=1}^{20} (T_{i-j}^{k} - \overline{T}_{i-j})^{2}}{19}}.$$
(7.5.6)

Стандартная неопределенность измерений временного интервала $u(T_{i-j})$, мкс, определяется по формуле:

$$u(T_{i-j}) = \frac{s(T_{i-j}^{k})}{\sqrt{20}}.$$
(7.5.7)

Распределение принимается нормальным.

7.5.5.5 Поправка, связанная с установкой УИСУ-1

Согласно сертификата калибровки установки УИСУ-1, расширенная неопределенность при измерении временного интервала составляет $(2 + 0,00005 \cdot T)$ нс, где T – численное значение временного интервала, выраженное в наносекундах. Поправка к показаниям установки принимается равной $\delta T_s = 0$ нс.

Распределение принимается нормальным.

7.5.5.6 Дифракционная поправка

Дифракционная поправка не рассчитывалась и принимается $\delta T_D = 0$ нс. Согласно экспериментальным данным аналогичных измерений, проведенных ранее, максимальное значение этой поправки для данных условий измерений не превышает 0,01 %. Значение поправки интерпретируется вкладом в суммарную неопределенность с границами ± 0,0001 · *T*.

Распределение принимается прямоугольным.

7.5.5.7 Измерение температуры жидкости

Измерение температуры жидкости производилось при помощи калибратора «ГРАДІЄНТ-2002», при этом за результат принималось среднее значение температуры, измеренной перед проведением измерений времени распространения ультразвуковых колебаний в образцах, и после проведения измерений.

7.5.5.8 Поправка, связанная с калибратором «ГРАДІЄНТ-2002»

Согласно сертификата калибровки калибратора «ГРАДІЄНТ-2002», расширенная неопределенность при измерении температуры воды составляет 0,13 °C. Поправка к показаниям калибратора принимается равной $\delta t = 0$ °C.

Распределение принимается нормальным.

7.5.5.9 Поправка, связанная с ТКС

Поправка к показаниям установки принимается равной $\partial k_t = 0 \text{ м/(с.°C)}$ в пределах $\pm 0,1 \text{ м/(с.°C)}$. Неопределенность ТКС $u_B(k_t)$, м/с, рассчитывается по формуле:

$$u_B(k_t) = \frac{k_t \Delta t}{\sqrt{3}} + \frac{\Delta k_t (20 - t)}{\sqrt{3}}$$
(7.5.8)

Распределение принимается прямоугольным.

7.5.5.10 Корреляция

Входные величины рассматриваются как некоррелированные.

7.5.5.11 Суммарная стандартная неопределенность

Суммарная стандартная неопределенность u(C), м/с, рассчитывается по формуле:

$$u(C) = \sqrt{\frac{(c(d) \cdot u(d))^{2} + (c(\delta d_{s}) \cdot u(\delta d_{s}))^{2} + (c(T_{i-j}) \cdot u(T_{i-j}))^{2} + (c(\delta T_{s}) \cdot u(\delta T_{s}))^{2} + (c(\delta T_{D}) \cdot u(\delta T_{D}))^{2} + (c(k_{t}) \cdot u(\delta k_{t}))^{2}}$$
(7.5.9)

где c(d), $c(\delta d_s)$ – коэффициенты чувствительности, связанные с измерением линейных размеров образцов, определяются по формуле:

$$c(d) = c(\delta d_s) = \frac{2 \cdot 1000 \cdot (i - j)}{T_{i-j} + \delta T_s + \delta T_D} ; \qquad (7.5.10)$$

 $c(T_{i-j}), c(\delta T_s), c(\delta T_D)$ – коэффициенты чувствительности, связанные с измерением времени распространения УЗК в образцах, определяются по формуле:

$$c(T_{i-j}) = c(\delta T_s) = c(\delta T_D) = -\frac{2 \cdot 1000 \cdot (j-i) \cdot (d+\delta d_s+\delta d_p)}{(T_{i-j}+\delta T_s+\delta T_D)^2};$$
(7.5.11)

 $c(k_t)$ – коэффициент чувствительности, связанный с измерением температуры и определением влияния температуры на скорость УЗК в образцах, принимается равным 1, так как оба слагаемых формулы (7.5.8) выражены в одной единице физической величины.

7.5.5.12 Расширенная неопределенность

Расширенная неопределенность U(C), м/с, определяется по формуле

$$U(C) = k \cdot u(c),$$
 (7.5.12)

где k – коэффициента охвата, для нормальном распределения и доверительной вероятности P = 95% принимается k = 2.

7.5.6 Результаты измерений толщины образцов

Результаты измерений толщины образцов приведены в таблице 7.5.1.

7.5.7 Результаты измерений времени распространения продольных ультразвуковых волн

Результаты измерений времени распространения продольных ультразвуковых волн в образцах приведены в таблицах 7.5.2-7.5.3.

Номер образца	1	2	3	4	5	6
Материал и	Кварцевое стекло	Кварцевое стекло	Кварцевое стекло	Стекло БК8	Сталь 40Х13	Сталь 40Х13
обозначение образца	KB10№05	КВ 20№05	КУ-1 40№1	20№1	10 № 2	20№1
	9,9130	19,9570	40,0560	20,0245	10,8410	21,1860
	9,9151	19,9580	40,0567	20,0250	10,8412	21,1855
	9,9136	19,9555	40,0560	20,0251	10,8410	21,1860
	9,9148	19,9560	40,0565	20,0269	10,8402	21,1862
Результаты	9,9150	19,9570	40,0567	20,0280	10,8404	21,1872
измерений d ^(k) , мм	9,9151	19,9563	40,0572	20,0265	10,8406	21,1862
r,	9,9168	19,9562	40,0564	20,0272	10,8412	21,1864
	9,9142	19,9570	40,0560	20,0263	10,8412	21,1861
	9,9137	19,9571	40,0563	20,0258	10,8406	21,1873
	9,9132	19,9564	40,0561	20,0256	10,8406	21,1868
Среднее						
арифметическое	9,9145	19,9567	40,0564	20,0261	10,8408	21,1864
значение \overline{d} , мм						
Стандартная						
неопределенность	0.000362	0.000224	0.000125	0.000346	0.000115	0.000180
измерений толщины	0,000302	0,000224	0,000123	0,000340	0,000115	0,000160
u(d), MM						

Таблица 7.5.1 – Результаты измерений толщины образцов

Материал и условное	Образ	ец №1	Образец №2				Образец №3	
обозначение образца	Кварцевое ст	екло КВ №05	Квар	цевое стекло КВ	№05	Кварі	цевое стекло КУ-	·1 №1
Частота датчика, МГц	5	10	2,5	5	10	2,5	5	10
Результаты измерений	3,3198	3,3200	6,6863	6,6872	6,6891	13,4909	13,4893	13,4906
T^k M^{k}	3,3196	3,3201	6,6851	6,6876	6,6890	13,4907	13,4894	13,4910
времени I_{i-j} , мкс	3,3198	3,3200	6,685	6,6876	6,6891	13,4903	13,4891	13,4909
	3,3200	3,3203	6,6866	6,6872	6,6888	13,4915	13,4893	13,4907
	3,3201	3,3199	6,6868	6,6871	6,6889	13,4909	13,4892	13,4907
	3,3196	3,3201	6,6864	6,6872	6,6891	13,4914	13,4894	13,4911
	3,3196	3,3200	6,6866	6,6873	6,689	13,4916	13,4896	13,4908
	3,3201	3,3200	6,6869	6,6875	6,6888	13,4915	13,4895	13,4907
	3,3199	3,3200	6,6868	6,6873	6,6891	13,4910	13,4895	13,4907
	3,3196	3,3199	6,6864	6,6876	6,689	13,4918	13,4896	13,4904
	3,3201	3,3201	6,6866	6,6876	6,6891	13,4919	13,4896	13,4908
	3,3201	3,3200	6,6870	6,6870	6,6888	13,4909	13,4894	13,4908
	3,3198	3,3199	6,6865	6,6872	6,6888	13,4905	13,4897	13,4909
	3,3197	3,3201	6,6870	6,6876	6,6892	13,4919	13,4897	13,4908
	3,3198	3,3204	6,6868	6,6876	6,6889	13,4915	13,4894	13,4906
	3,3198	3,3204	6,6872	6,6876	6,6888	13,4915	13,4898	13,4910
	3,3200	3,3202	6,6873	6,6871	6,6892	13,4909	13,4898	13,4909
	3,3199	3,3201	6,6872	6,6876	6,689	13,4913	13,4893	13,4908
	3,3197	3,3200	6,6872	6,6875	6,6889	13,4915	13,4893	13,4910
	3,3197	3,3206	6,6871	6,6872	6,6888	13,4912	13,4896	13,4907
Среднее арифметическое								
\overline{T} where \overline{T}	3,3198	3,3201	6,6866	6,6874	6,6890	13,4912	13,4895	13,4908
Shadenne 1_{i-j} , MRC								
Стандартная								
неопределенность	0 00004	0 00004	0.00014	0.00005	0.00003	0.00010	0 00004	0.00004
измерений $\mu(\overline{T},)$ мкс	0,00004	0,00004	0,00014	0,00005	0,00005	0,00010	0,00004	0,00004
$\lim_{t \to 0} u(\mathbf{r}_{i-j}), \text{ where } u(\mathbf{r}_{i-j}) = u(\mathbf{r}_{i-j})$								
Температура <i>t</i> , °С	20,7	19,8	19,3	21,3	20,3	20,3	21,5	20,8
ТКС k_t , м/(с·°С)	0,5=	±0,1		$0,5{\pm}0,1$			$0,7{\pm}0,1$	

Таблица 7.5.2

Материал и условное		Образец №4		Образ	ец №5		Образец №6	
обозначение образца		Стекло БК8 №1		Сталь 402	X13 10№2	(Сталь 40Х13 20№	2
Частота датчика, МГц	2,5	5	10	5	10	2,5	5	10
Результаты измерений	7,0083	7,0098	7,0081	3,6096	3,6125	7,0517	7,0519	7,0541
T^k	7,0083	7,0098	7,0085	3,6095	3,6123	7,0518	7,0518	7,0536
времени I_{i-j} , мкс	7,0082	7,0100	7,0083	3,6093	3,6126	7,0518	7,0519	7,0537
	7,0079	7,0099	7,0090	3,6095	3,6119	7,0522	7,0522	7,0533
	7,0083	7,0098	7,0091	3,6096	3,6116	7,0513	7,0519	7,0538
	7,0085	7,0098	7,0086	3,6095	3,6123	7,0520	7,0523	7,0535
	7,0084	7,0099	7,0078	3,6096	3,6119	7,0520	7,0524	7,0535
	7,0086	7,0098	7,0081	3,6091	3,6119	7,0513	7,0521	7,0538
	7,0081	7,0097	7,0087	3,6094	3,6126	7,0512	7,0519	7,0537
	7,0078	7,0098	7,0091	3,6096	3,6121	7,0513	7,0525	7,0538
	7,0077	7,0099	7,0079	3,6095	3,6126	7,0513	7,0519	7,0536
	7,0078	7,0097	7,0077	3,6098	3,6125	7,0523	7,0522	7,0537
	7,0077	7,0098	7,0079	3,6098	3,6119	7,0520	7,0520	7,0538
	7,0078	7,0099	7,0081	3,6096	3,6121	7,0513	7,0522	7,0538
	7,0081	7,0099	7,0086	3,6098	3,6121	7,0516	7,0521	7,0539
	7,0085	7,0095	7,0081	3,6099	3,6119	7,0516	7,0518	7,0537
	7,0081	7,0097	7,0083	3,6098	3,6123	7,0519	7,0518	7,0538
	7,0082	7,0098	7,0091	3,6099	3,6125	7,0523	7,0519	7,0535
	7,0081	7,0095	7,0086	3,6099	3,6122	7,0528	7,0525	7,0537
	7,0080	7,0096	7,0087	3,6097	3,6124	7,0525	7,0525	7,0538
Среднее арифметическое значение \overline{T}_{i-j} , мкс	7,0081	7,0098	7,0084	3,6096	3,6122	7,0518	7,0521	7,0537
Стандартная неопределенность измерений $u(\overline{T}_{i-j})$, мкс	0,00006	0,00003	0,00010	0,00005	0,00007	0,00010	0,00006	0,00004
Температура <i>t</i> , °С	19,5	21,6	21,4	21,4	20,6	20,6	21,5	21,2
TKC k_t , m/(c·°C)		0,0±0,1		-0,5	±0,1		-0,5±0,1	

7.5.8 Результаты вычислений скорости распространения УЗК в образцах

Результаты вычислений скорости распространения УЗК в образцах при использовании датчика частотой 2,5 МГц приведены в таблице 7.5.4.

Таблица 7.5.4.

Номер образца	Материал и условное обозначение образца	Результаты вычислений скорости С, м/с	Результаты вычислений скорости, приведенной к 20 °C, C ₂₀ , м/с	Суммарная стандартная неопределенность измерений скорости <i>u</i> (<i>C</i>), м/с	Расширенная неопределенность измерений скорости <i>u</i> (<i>C</i>), м/с
2	Кварцевое стекло КВ № 05	5969,2	5969,5	1,11	2,22
3	Кварцевое стекло КУ-1 №1	5938,2	5938,0	0,69	1,38
4	Стекло БК8 №1	5715,1	5715,1	1,02	2,04
6	Сталь 40Х13 20-№2	6008,7	6009,0	1,07	2,14

Результаты вычислений скорости распространения УЗК в образцах приведены при использовании датчика частотой 5 МГц приведены в таблице 7.5.5.

Таблица 7.5.5

Номер образца	Материал и условное обозначение образца	Результаты вычислений скорости <i>С</i> , м/с	Результаты вычислений скорости, приведенной к 20 °C, C ₂₀ , м/с	Суммарная стандартная неопределенность измерений скорости <i>u</i> (<i>C</i>), м/с	Расширенная неопределенность измерений скорости <i>u</i> (<i>C</i>), м/с
1	Кварцевое стекло КВ № 05	5972,9	5972,5	2,00	4,00
2	Кварцевое стекло КВ № 05	5968,4	5967,8	1,11	2,24
3	Кварцевое стекло КУ-1 №1	5938,9	5937,9	0,70	1,68
4	Стекло БК8 №1	5713,7	5713,7	1,02	2,04
5	Сталь 40Х13 10-№2	6006,6	6007,3	1,86	3,74
6	Сталь 40Х13 20-№2	6008,5	6009,3	1,07	2,08

Результаты вычислений скорости распространения УЗК в образцах при использовании датчика частотой 10 МГц приведены в таблице 7.5.6

Таблица 7.5.6

Номер образца	Материал и условное обозначение образца	Результаты вычислений скорости <i>С</i> , м/с	Результаты вычислений скорости, приведенной к 20 °C, C ₂₀ , м/с	Суммарная стандартная неопределенность измерений скорости <i>u</i> (<i>C</i>), м/с	Расширенная неопределенность измерений скорости <i>u</i> (<i>C</i>), м/с
1	Кварцевое стекло КВ № 05	5972,4	5972,5	1,99	3,98
2	Кварцевое стекло КВ № 05	5967,0	5966,9	1,11	2,20
3	Кварцевое стекло КУ-1 №1	5938,3	5937,8	0,70	1,46
4	Стекло БК8 №1	5714,9	5714,9	1,03	2,04
5	Сталь 40Х13 10-№2	6002,3	6002,6	1,85	3,70
6	Сталь 40Х13 20-№2	6007,1	6007,7	1,07	2,14

7.5.9 Бюджеты неопределенности

Во всех таблицах бюджетов неопределенности измеренные и расчетные величины представлены в следующих единицах измерений:

- толщина образцов d, значения поправки к ней δd_s и связанные с ними стандартные неопределенности – в миллиметрах (мм);

- время распространения ультразвуковых волн T_{i-j} , значения поправок к нему δT_s , δT_D и связанные с ними стандартные неопределенности – в микросекундах;

- скорость продольных ультразвуковых волн C и связанная с ней стандартная неопределенность u(C) – в метрах в секунду.

7.5.9.1 Измерения при использовании датчика частотой 2,5 МГц

Бюджеты неопределенности измерений скорости продольных ультразвуковых волн в образцах при использовании датчика частотой 2,5 МГц представлен в таблице 7.5.6.

Таблица 🕽	7.5	6.6
-----------	-----	-----

Номер образиа	Материал и	Величина	Оценка	Стандартная	Распределение	Коэффициент нувствительности	Вклад
ооразца	обозначение			ность		чувствительности	пенности
	образца			noorb			nennoenn
1	2	3	4	5	6	7	8
		d	19,9567	0,00026	нормальное	299,1	0,078
		δd_s	0	0,000087	нормальное	299,1	0,026
	10	Ti _{-j}	6,6866	0,00014	нормальное	892,7	0,124
2	Кварцевое	δT_s	0	0,00117	нормальное	892,7	1,042
2		δT_D	0	0,00039	прямоугольное	892,7	0,345
	JN≌ 05	δk_t	0	0,0779	прямоугольное	1	0,078
		С	5969,2	-	нормальное	-	1,11
		C_{20}	5969,5	-	нормальное	-	1,11
		d	40,0565	0,00017	нормальное	148,2	0,025
		δd_s	0	0,00009	нормальное	148,2	0,013
		Ti _{-j}	13,4912	0,00010	нормальное	440,2	0,045
2	Кварцевое	δT_s	0	0,00134	нормальное	440,2	0,589
5	KV 1 Mol	δT_D	0	0,00078	прямоугольное	440,2	0,343
	IC J −1 JN <u>2</u> 1	δk_t	0	0,0699	прямоугольное	1	0,070
		С	5938,2	-	нормальное	-	0,68
		C_{20}	5938,0	-	нормальное	-	0,69
		d	20,0261	0,00035	нормальное	285,4	0,099
		δd_s	0	0,00009	нормальное	285,4	0,025
		Ti_{-j}	7,0081	0,00006	нормальное	815,5	0,050
4	Стекло БК8	δT_s	0	0,00118	нормальное	815,5	0,958
4	Nº1	δT_D	0	0,00040	прямоугольное	815,5	0,330
		δk_t	0	0,02887	прямоугольное	1	0,029
		С	5715,1	-	нормальное	-	1,02
		C_{20}	5715,1	-	нормальное	-	1,02

1 2 3 4 5 7 8 6 d 21,1864 0,00018 283,6 0,037 нормальное 0,00009 283,6 δd_s 0 нормальное 0,025 Ti_{-j} 7,0518 0,00010 нормальное 852,1 0,087 Сталь δT_s 0,00118 852,1 1,002 0 нормальное 6 40X13 0 0,00041 852,1 0,347 δT_D прямоугольное 20**-№**2 0 0,0722 0,072 δk_t прямоугольное 1 С 6008,7 1,07 нормальное -- C_{20} 6009,0 нормальное -1,07

Продолжение таблицы 7.5.6

7.5.9.2 Измерения при использовании датчика частотой 5 МГц

Бюджеты неопределенности измерений скорости продольных ультразвуковых волн в образцах при использовании датчика частотой 5 МГц представлен в таблице 7.5.7.

Таблица 7	.5.7
-----------	------

Номер образиа	Материал и условное	Величина	Оценка	Стандартная неопрелелен-	Распределение	Коэффициент чувствительности	Вклад неопреле-
Color-	обозначение			ность		1922222222222222	ленности
	образца						
1	2	3	4	5	6	7	8
		d	9,9144	0,00041	нормальное	602,4	0,244
		δd_s	0	0,000087	нормальное	602,4	0,052
	10	Ti _{-j}	3,3198	0,000041	нормальное	1799,1	0,073
1	Кварцевое	δT_s	0	0,001083	нормальное	1799,1	1,948
1	стекло КВ	δT_D	0	0,00019	прямоугольное	1799,1	0,345
	JN≌ U.S	δk_t	0	0,0779	прямоугольное	1	0,078
		С	5972,9	-	нормальное	-	2,00
		C_{20}	5972,5	-	нормальное	-	2,00
		d	19,9567	0,00022	нормальное	299,1	0,078
		δd_s	0	0,000087	нормальное	299,1	0,026
		Ti _{-j}	6,6874	0,000048	нормальное	892,5	0,043
2	Кварцевое	δT_s	0	0,001167	нормальное	892,5	1,042
2	стекло КВ	δT_D	0	0,00039	прямоугольное	892,5	0,345
	JN≌ U.S	δk_t	0	0,1126	прямоугольное	1	0,113
		С	5968,4	-	нормальное	-	1,10
		C_{20}	5967,8	-	нормальное	Коэффициент чувствительности 7 602,4 602,4 1799,1 1799,1 1799,1 21799,1 21799,1 299,1 299,1 299,1 892,5 892,5 892,5 892,5 892,5 200,1 148,3 148,3 148,3 148,3 148,3 2440,3 200,1 10,1 20,1 20,1 20,1 20,1 20,1 20,	1,11
		d	40,0565	0,00017	нормальное	148,3	0,025
		δd_s	0	0,00009	нормальное	148,3	0,013
		Ti _{-j}	13,4895	0,000044	нормальное	440,3	0,019
2	Кварцевое	δT_s	0	0,00134	нормальное	440,3	0,589
3	стекло	δT_D	0	0,00078	прямоугольное	440,3	0,343
	Ку-1 л≌т	δk_t	0	0,1391	прямоугольное	1	0,139
		С	5938,9	-	нормальное	-	0,68
		C_{20}	5937,9	-	нормальное	-	0,70

1	2	3	4	5	6	7	8
		d	20,0261	0,00035	нормальное	285,3	0,099
		δd_s	0	0,00009	нормальное	285,3	0,025
		Ti _{-j}	7,0098	0,000030	нормальное	815,1	0,024
4	Стекло БК8	δT_s	0	0,001175	нормальное	815,1	0,958
4	Nº1	δT_D	0	0,00040	прямоугольное	815,1	0,330
		δk_t	0	0,0924	прямоугольное	1	0,092
		С	5713,7	-	нормальное	-	1,02
		C_{20}	5713,7	-	нормальное	-	1,02
		d	10,8408	0,00012	нормальное	554,1	0,118
		δd_s	0	0,000087	нормальное	554,1	0,048
5	Сталь	Ti _{-j}	3,6096	0,000047	нормальное	1664,0	0,079
		δT_s	0	0,00109	нормальное	1664,0	1,814
5	40×13 $10 - N_0 2$	δT_D	0	0,00021	прямоугольное	1664,0	0,347
	10-5122	δk_t	0	0,1184	прямоугольное	1	0,118
		2 3 4 5 6 7 d 20,0261 0,00035 нормальное 285,3 δd_s 0 0,00009 нормальное 285,3 Ti_j 7,0098 0,000030 нормальное 815,1 δT_s 0 0,001175 нормальное 815,1 δT_D 0 0,00040 прямоугольное 815,1 δk_i 0 0,0924 прямоугольное 1 C 5713,7 - нормальное - C_{20} 5713,7 - нормальное 554,1 δd_s 0 0,00012 нормальное 1664,0 δT_s 0 0,00021 прямоугольное 1 C 6006,6 - нормальное -<	-	1,85			
		C_{20}	6007,3	-	нормальное	-	1,86
		d	21,1864	0,00018	нормальное	283,6	0,051
		δd_s	0	0,000087	нормальное	283,6	0,025
	Стат	Ti_{-j}	7,0521	0,000055	нормальное	852,0	0,047
6		δT_s	0	0,001176	нормальное	852,0	1,002
U	40A13 20-No2	δT_D	0	0,00041	прямоугольное	852,0	0,347
	20 5122	δk_t	0	0,1241	прямоугольное	1	0,124
		С	6008,5	-	нормальное	-	1,06
		C_{20}	6009,3	-	нормальное	-	1,07

Продолжение табл. 7.5.7

7.5.9.3 Измерения при использовании датчика частотой 10 МГц

Бюджеты неопределенности измерений скорости продольных ультразвуковых волн в образцах при использовании датчика частотой 10 МГц представлен в таблице 7.5.8.

Таблица 7.5.8

Номер	Материал и	Величина	Оценка	Стандартная	Распределение	Коэффициент	Вклад
образца	условное			неопределен-		чувствительности	неопреде-
	обозначение			ность			ленности
	образца						
1	2	3	4	5	6	7	8
		d	9,9144	0,00036	нормальное	602,4	0,218
		δd_s	0	0,00009	нормальное	602,4	0,052
	10	Ti _{-j}	3,3201	0,00004	нормальное	1798,9	0,076
1	кварцевое	δT_s	0	0,00108	прямоугольное	1798,9	1,948
1		δT_D	0	0,00019	прямоугольное	1798,9	0,345
	JN <u>0</u> 03	δk_t	0	0,0779	прямоугольное	1	0,778
		С	5972,4	-	нормальное	-	1,99
		\overline{C}_{20}	5972,5	-	нормальное	-	1,99

Продолжение табл. 7.5.8

1	2	3	4	5	6	7	8
		d	19,9567	0,00022	нормальное	299,0	0,067
		δd_s	0	0,00009	нормальное	299,0	0,026
	1/	Ti_{-j}	6,6890	0,00003	нормальное	892,1	0,028
2	кварцевое	δT_s	0	0,00117	нормальное	892,1	1,041
2		δT_D	0	0,00039	прямоугольное	892,1	0,345
	1000	δk_t	0	0,1126	прямоугольное	1	0,113
		С	5967,0	-	нормальное	-	1,10
		C_{20}	5966,9	-	нормальное	-	1,11
		d	40,0564	0,00013	нормальное	148,3	0,019
		δd_s	0	0,00009	нормальное	148,3	0,013
	1/	Ti _{-j}	13,4908	0,00004	нормальное	440,2	0,016
2	кварцевое	δT_s	0	0,00134	нормальное	440,2	0,589
5	KV_1 No1	δT_D	0	0,00078	прямоугольное	440,2	0,343
	K9-1 <u>N2</u> 1	δk_t	0	0,1391	прямоугольное	1	0,139
		С	5938,3	-	нормальное	-	0,68
		C_{20}	5937,8	-	нормальное	-	0,70
		d	20,0261	0,00035	нормальное	285,4	0,099
		δd_s	0	0,00009	нормальное	285,4	0,025
		Ti _{-j}	7,0084	0,00010	нормальное	815,4	0,082
4	Стекло БК8	δT_s	0	0,00118	нормальное	815,4	0,958
4	Nº1	δT_D	0	0,00040	прямоугольное	815,4	0,330
		δk_t	0	0,0924	прямоугольное	1	0,092
		С	5714,9	-	нормальное	-	1,02
		C_{20}	5714,9	-	нормальное	-	1,03
		d	10,8408	0,00012	нормальное	553,7	0,064
		δd_s	0	0,00009	нормальное	553,7	0,048
	G	Ti _{-j}	3,6122	0,00007	нормальное	1661,7	0,110
5	Сталь 40×12	δT_s	0	0,00109	нормальное	1661,7	1,812
5	40A13	δT_D	0	0,00021	прямоугольное	1661,7	0,347
	10-5122	δk_t	0	0,1184	прямоугольное	1	0,118
		С	6002,3	-	нормальное	-	1,85
		C_{20}	6002,6	-	нормальное	-	1,85
		d	21,1864	0,00018	нормальное	283,5	0,038
		δd_s	0	0,00009	нормальное	283,5	0,025
	C	Ti _{-j}	7,0537	0,00004	нормальное	851,6	0,033
6	Сталь 40V12	δT_s	0	0,00118	нормальное	851,6	1,002
0	40A13 20_M2	δT_D	0	0,00041	прямоугольное	851,6	0,347
	20 3122	δk_t	0	0,1241	прямоугольное	1	0,124
		С	6007,1	-	нормальное	-	1,06
		C_{20}	6007,7	-	нормальное	-	1,07

7.6 Результаты измерений, представленные НИМ, Китай

7.6.1 Наименование, тип и номер эталонов, используемых для измерения толщины образца и скорости распространения продольных ультразвуковых волн

Толщина образца измерялась координатно-измерительной машиной с неопределенностью (0,5+L/700) мкм, где L – толщина образца.

Скорость распространения продольных ультразвуковых волн измерялась с помощью национального эталона для калибровки фундаментальных ультразвуковых свойств материалов с идентификатором эталона [2011] 237.

7.6.2 Условия измерений

Использован иммерсионный пьезоэлектрический способ возбуждения и регистрации ультразвука. Иммерсионной жидкостью была вода с температурой в диапазоне от 18,5 °C до 20,0 °C во время экспериментов. Неопределенность измерений температуры 1 мК (при k = 2).

7.6.3 Описание эталона, методика выполнения измерений скорости (времени) распространения продольных ультразвуковых волн

Схема измерительной системы показана на рис.7.6.1.

Рис. 7.6.1 Экспериментальная установка для измерений методом прохождения с замещением (through-transmission substitution technique)

Система состоит из согласованной пары плоских поршневых ультразвуковых преобразователей (Panametrics Inc., Waltham, MA), которые имеют одинаковые диаметры и расположенные в конфигурации прохождения при нормальном падении (in a throughtransmission normal incidence configuration). Передающий преобразователь возбуждался импульсным генератором (33250A, Agilent Technologies). Образец помещен в середине между двумя преобразователями со средствами центровки (юстировки), регулирующими их положение. Поверхность образца была перпендикулярна оси пучка, с помощью максимизации амплитуды первого эха. Полученный сигнал дискретизировался и оцифровывался цифровым осциллографом (HDO6104, Lecroy), затем передавался на главный компьютер для сохранения и автономного анализа. Приемный преобразователь имеет пять степеней свободы для настройки. Температуру измеряли с точностью 1 мК (k=2). Измерения проводились путем анализа данных с установленным образцом и без него. Время прохождения регистрировалось с помощью двух процедур. Теоретическая расчетная формула для оценки скорости продольной ультразвуковой волны имеет вид

$$C_t = \frac{dc_w}{d + \Delta x \cdot c_w} \tag{7.6.1}$$

где *C*_t и *d* – измеренные скорость и толщина образца, соответственно;

 $c_{\rm w}$ – скорость звука в воде; Δx – разность времени прохождения с образцом и без него.

7.6.4 Модель измерения

Во время измерений наблюдаются небольшие изменения температуры воды. Таким образом, для учета этой разности температур до и после «перехвата» (the interception) используется измерительная модель для скорости продольной ультразвуковой волны

$$C_{t} = \frac{dc_{w2}}{d + (c_{w2}x_{2} - c_{w1}x_{1})}$$
(7.6.2)

где C_t и d – измеренные скорость и толщина образца, соответственно; c_{w1} и x_1 – скорость звука и время прохождения без установки образца; c_{w2} и x_2 – скорость звука и время прохождения после установки образца.

7.6.5 Определение составляющих суммарной стандартной неопределенности измерений

Более подробное описание бюджета неопределенности сводится к следующему:

- и₁: неопределенность повторных измерений скорости продольной ультразвуковой волны

Для каждой из комбинаций частота-образец было проведено не менее 10

независимых измерений, $u_1 = \sqrt{\frac{\sum_{i=1}^{n} (v_i - v)^2}{n(n-1)}}$, где n – число измерений; v_i – измеренная

скорость для каждого измерения и \overline{v} – средняя скорость. Этот вклад объясняется возможным рассогласованием осей, неопределенностью измерений временных интервалов, изменениями температуры образцов (воды) и другими источниками неопределенности.

- и2: неопределенность измерения толщины образцов

Толщина образца измерялась координатно-измерительной машиной с неопределенностью, определяемой как (0,5+L/700) мкм, где L – толщина образца. Этот компонент неопределенности можно проследить до эталона длины института метрологии.

Учитывая, что изменение температуры при одном измерении находится в пределах 10 мК, а скорость звука практически постоянна, то коэффициент чувствительности может быть рассчитан как

$$\frac{d}{C_t} \frac{\partial C_t}{\partial d} = \frac{\Delta x c_w}{d + \Delta x \cdot c_w}$$
(7.6.3)

- из: неопределенность измерения временных интервалов

Время прохождения измерялось осциллографом (HDO6104, LeCroy), и эта составляющая неопределенности оценивалась по крайней мере из 10 независимых

измерений, когда температура почти постоянна, $u_3 = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}}$, где n – число измерений

времени, x_i – измеренное время прохождения для каждого измерения и \overline{x} – среднее время.

- u(c_w) : неопределенность измерений скорости звука

Поскольку скорость звука в среде измерений (дистиллированная деионизированная вода) зависит от температуры и атмосферного давления, расчет продольной ультразвуковой скорости должен отражать это.

Скорость звука в воде вычислялась по формуле:

$$c(t, p_{atm}) = v_0 + v_1 t + v_2 t^2 + v_3 t^3 + (u_0 + u_1 t + u_2 t^2) \times (p_{atm} / 100)$$
(7.6.4)

Здесь, p_{atm} – барометрическое давление в бар, $t=T_c/100$, и T_c – температура в градусах Цельсия, и $v_0 = 1402.7$, $v_1 = 488$, $v_2 = -482$, $v_3 = 135$; $u_0 = 15.9$, $u_1 = 2.8$, $u_2 = 2.4$.

Относительная неопределенность оценки скорости звука может быть записана следующим образом

$$u(c_w) = \sqrt{\left(\frac{t}{c_w}\frac{\partial c_w}{\partial t}\frac{u_t}{t}\right)^2 + \left(\frac{p_{atm}}{c_w}\frac{\partial c_w}{\partial p_{atm}}\frac{u_{p_{atm}}}{p_{atm}}\right)^2}$$
(7.6.5)

где коэффициенты чувствительности равны

$$\frac{t}{c_w}\frac{\partial c_w}{\partial t} = \frac{v_1 t + v_2 t^2 + v_3 t^3 + [u_1 t + u_2 t^2] \times (p_{atm} / 100)}{v_0 + v_1 t + v_2 t^2 + v_3 t^3 + [u_0 + u_1 t + u_2 t^2] \times (p_{atm} / 100)}$$
(7.6.6)

$$\frac{p_{atm}}{c_w} \frac{\partial c_w}{\partial p_{atm}} = \frac{[u_0 + u_1 t + u_2 t^2] \times (p_{atm} / 100)}{v_0 + v_1 t + v_2 t^2 + v_3 t^3 + [u_0 + u_1 t + u_2 t^2] \times (p_{atm} / 100)}$$
(7.6.7)

Относительные неопределенности температуры воды и атмосферного давления равны

$$u_4 = \frac{u_t}{t} \tag{7.6.8}$$

$$u_5 = \frac{u_{p_{atm}}}{p_{atm}} \tag{7.6.9}$$

Коэффициент чувствительности скорости звука для измерения продольной ультразвуковой скорости может быть рассчитан как

$$\frac{c_w}{C_t} \frac{\partial C_t}{\partial c_w} = \frac{d}{d + \Delta x \cdot c_w}$$
(7.6.10)

- *u*₄ : неопределенность измерения температуры воды

Температура воды в сосуде измеряется платиновым термометром с неопределенностью 1 мК (*k*=2). Относительная температурная неопределенность и соответствующий коэффициент чувствительности могут быть оценены следующим образом. Здесь температура воды была выше 18,5 °C и в качестве атмосферного давления использовалось 1013 мбар.

$$u_4 = \frac{u_t}{t} = \frac{10^{-3}}{18.5} = 5.4 \times 10^{-5} \tag{7.6.11}$$

$$\frac{t}{c_w} \frac{\partial c_w}{\partial t} \approx 1 \tag{7.6.12}$$

- и₅ : неопределенность измерения атмосферного давления

Набор измерений занимает около 15 минут, а изменение атмосферного давления за этот период не превышает 1 мбар. Разрешение используемого барометра составляет 0,01 мбар, а неопределенность калибровки барометра не превышает 0,5%. Однако неопределенностью можно пренебречь, поскольку коэффициент чувствительности составляет около 0,0001

$$u_5 \approx 0.5\%$$
 (7.6.13)

$$\frac{p_{atm}}{c_w} \frac{\partial c_w}{\partial p_{atm}} = 0.0001$$
(7.6.14)

- и6 : температурная зависимость скорости продольных ультразвуковых волн

Результаты измерений скоростей распространения продольных ультразвуковых волн приводятся к температуре 20 °C с учетом температурного коэффициента скорости (ТКС) для материала образца с использованием поправки по следующей формуле

$$\widetilde{C}_{20^{\circ}C} = \widetilde{C}_{t} + (20, 0 - t^{\circ}C)k_{t}$$
(7.6.15)

где t – температура образца (жидкости) во время измерений; k_t – температурный коэффициент скорости с оцененными границами ±0,1 м/(с·°С), предоставленный пилотной лабораторией.

- и₆ : дифракционные эффекты

Временные интервалы были измерены на первом минимуме формы волны, захваченной осциллографом. При таком измерении неопределенностью, вызванной дифракционной поправкой для измерения скорости, можно пренебречь.

7.6.6 Результаты измерений толщины и скорости распространения продольных ультразвуковых волн

Измеренные толщина и скорость в эталонных образцах следующие (таблица 7.6.1).

Таблица 7.6.1

	Материал	Физически	ие размеры	Измеренная	Измеренная	Измеренная
Наименование	образца Номер образца	Измеренная толщина, мм	Поперечные размеры, мм	скорость (м/с) на 2,25 МГц	скорость (м/с) на 5 МГц	скорость (м/с) на 10 МГц
Образец №1	Кварцевое стекло КВ 10-№05	9.911	100×100	/	5964.7	5964.9
Образец №2	Кварцевое стекло КВ 20-№05	19.957	100×100	5959.5	5960.5	5958.7
Образец №3	Кварцевое стекло КУ-1 40-№1	40.055	Ø 140	5936.4	5936.8	5936.7
Образец №4	Стекло БК8 20-№1	20.030	Ø 100	5710.9	5712.3	5711.2
Образец №5	Сталь 40Х13 10-№2	10.839	Ø 50	/	6006.3	6006.5
Образец №6	Сталь 40Х13 20-№1	21.184	Ø 90	6003.4	6002.5	6004.2

7.6.7 Бюджеты неопределенности

Детализированный бюджет неопределенности для каждого образца (отдельно для каждой частоты) с указанием оценок составляющих неопределенности, значения скорости распространения продольных ультразвуковых волн и значения суммарной стандартной неопределенности измерений приведен в таблицах 7.6.2-7.6.6.

	Образец	Ква І	рцевое с КВ 20-№	текло 05	Ква Н	рцевое с ХУ-1 40-Ј	гекло №1	Стен	сло БК8 2	20-№1	Сталь	: 40X13 2	20-№1
Из	меренная скорость, м/с		5959.5			5936.4			5710.9			6003.4	
	Примечание	$u(x_i) / \%$	Ci	$c_i u(x_i) / \%$	$u(x_i) / \%$	c_{i}	$c_i u(x_i) / \%$	$u(x_{\rm i}) / \%$	Ci	$c_i u(x_i) / $ %	$u(x_{\rm i}) / \%$	Ci	$c_i u(x_i) / \%$
u_1	Неопределенность повторных измерений скорости	3.1e-2	1	3.1e-2	3.5e-2	1	3.5e-2	4.2e-2	1	4.2e-2	3.2e-2	1	3.2e-2
<i>u</i> ₂	Неопределенность измерения толщины образца	2.5e-3	3.03	7.6e-3	1.3e-3	3.01	3.8e-3	2.5e-3	2.86	7.2e-3	2.4e-3	3.06	7.2e-3
<i>u</i> ₃	Неопределенность измерения временных интервалов	2.2e-2	1	2.2e-2	2.3e-2	1	2.3e-2	1.6e-2	1	1.6e-2	1.9e-2	1	1.9e-2
<i>u</i> _{cw}	Неопределенность измерения скорости звука	5.4e-3	4.03	2.2e-2	5.4e-3	4.01	2.2e-2	5.4e-3	3.86	2.1e-2	5.4e-3	4.06	2.2e-2
u_4	Неопределенность измерения температуры воды	5.4e-3	1	5.4e-3	5.4e-3	1	5.4e-3	5.4e-3	1	5.4e-3	5.4e-3	1	5.4e-3
<i>u</i> ₅	Неопределенность измерения атмосферного давления	0.5	1e-4	5e-5	0.5	1e-4	5e-5	0.5	1e-4	5e-5	0.5	1e-4	5e-5
<i>и</i> ₆	Температурная зависимость	3.4e-3	1	3.4e-3	3.4e-3	1	3.4e-3	3.5e-3	1	3.5e-3	3.4e-3	1	3.4e-3
<i>u</i> ₇	Дифракционные эффекты			neg.			neg.			neg.			neg.
<i>u</i> _c	Суммарная неопределенность, %			0.045			0.048			0.050			0.044
U (k=2)	Расширенная неопределенность, %			0.090			0.096			0.101			0.088

Таблица 7.6.2 – Бюджет неопределенности на частоте 2,25 МГц

	Образец	Ква	рцевое сте КВ 10-№0:	екло 5	Ква	рцевое сте КВ 20-№0:	кло: 5	Квај к	рцевое сте ХУ-1 40-№	кло: 1
Из	меренная скорость, м/с		5964.7			5960.5			5936.8	
	Примечание	$u(x_{\rm i}) / \%$	Ci	$c_i u(x_i) / $ %	$u(x_{\rm i}) / \%$	Ci	$c_i u(x_i) / $ %	$u(x_{\rm i}) / \%$	Ci	$c_i u(x_i) / $ %
u_1	Повторение измерений	5.5e-2	1	5.5e-2	4.5e-2	1	4.5e-2	3.7e-2	1	3.7e-2
<i>u</i> ₂	Толщина образца	5.1e-3	3.03	1.5e-2	2.5e-3	3.03	7.6e-3	1.3e-3	3.01	3.8e-3
<i>u</i> ₃	Временные интервалы	2.5e-2	1	2.5e-2	1.5e-2	1	1.5e-2	1.1e-2	1	1.1e-2
<i>U_{сw}</i>	Скорость звука	5.4e-3	4.03	2.2e-2	5.4e-3	4.03	2.2e-2	5.4e-3	4.01	2.2e-2
u_4	Температура воды	5.4e-3	1	5.4e-3	5.4e-3	1	5.4e-3	5.4e-3	1	5.4e-3
<i>u</i> ₅	Атмосферное давление	0.5	1e-4	5e-5	0.5	1e-4	5e-5	0.5	1e-4	5e-5
<i>u</i> ₆	Температурная зависимость	3.4e-3	1	3.4e-3	3.4e-3	1	3.4e-3	3.4e-3	1	3.4e-3
<i>u</i> ₇	Дифракция			neg.			neg.			neg.
<i>u</i> _c	Суммарная неопределенность, %			0.066			0.053			0.045
U (k=2)	Расширенная неопределенность, %			0.132			0.106			0.090

Таблица 7.6.3 – Бюджет неопределенности на частоте 5 МГц

	Образец	Стен	кло БК8 20)-Nº1	Стал	њ 40X13 1	0-№2	Стал	њ 40X13 20)- № 1	
Из	меренная скорость, м/с		5712.3			6006.3			Сталь $40X13 20-№1$ 6002.5 $(x_i) / \%$ c_i $c_i u()%$ 4.4e-2 1 4.4e 2.4e-3 3.06 7.2e 1.4e-2 1 1.4e 5.4e-3 4.06 2.2e 5.4e-3 1 5.4e 0.5 1e-4 5e 3.4e-3 1 3.4e		
	Примечание	$u(x_{\rm i}) / \%$	Ci	$c_{i} u(x_{i}) / $ %	$u(x_{\rm i}) / \%$	Ci	$c_{i} u(x_{i}) / $ %	$u(x_{\rm i}) / \%$	Ci	$c_i u(x_i) / \%$	
<i>u</i> ₁	Повторение измерений	4.9e-2	1	4.9e-2	5.6e-2	1	5.6e-2	4.4e-2	1	4.4e-2	
<i>u</i> ₂	Толщина образца	2.5e-3	2.86	7.2e-3	4.6e-3	3.05	1.4e-2	2.4e-3	3.06	7.2e-3	
<i>u</i> ₃	Временные интервалы	4.1e-2	1	4.1e-2	1.5e-2	1	1.5e-2	1.4e-2	1	1.4e-2	
u_{cw}	Скорость звука	5.4e-3	3.86	2.1e-2	5.4e-3	4.05	2.2e-2	5.4e-3	4.06	2.2e-2	
u_4	Температура воды	5.4e-3	1	5.4e-3	5.4e-3	1	5.4e-3	5.4e-3	1	5.4e-3	
<i>u</i> ₅	Атмосферное давление	0.5	1e-4	5e-5	0.5	1e-4	5e-5	0.5	1e-4	5e-5	
<i>u</i> ₆	Температурная зависимость	3.5e-3	1	3.5e-3	3.4e-3	1	3.4e-3	3.4e-3	1	3.4e-3	
<i>u</i> ₇	Дифракция			neg.			neg.			neg.	
<i>u</i> _c	Суммарная неопределенность, %			0.068			0.064			0.052	
U (k=2)	Расширенная неопределенность, %			0.136			0.128			0.104	

Таблица 7.6.4 – Бюджет неопределенности на частоте 5 МГц

	Образец	Ква	рцевое сто КВ 10-№0	екло 5	Ква	рцевое сто КВ 20-№0	екло 5	Ква Н	KBapµeBoe crek 5936.7 $(x_i) / \%$ c_i 3.6e-2 1 1.3e-3 3.01 1.4e-2 1 5.4e-3 4.01 5.4e-3 1 0.5 1e-4 3.4e-3 1		
Изм	иеренная скорость, м/с		5964.9			5958.7			5936.7		
	Примечание	$u(x_{\rm i}) / \%$	Ci	$c_i u(x_i) / $ %	$u(x_{\rm i}) / \%$	Ci	$c_i u(x_i) / $ %	$u(x_{\rm i}) / \%$	Ci	$c_i u(x_i) / $ %	
<i>u</i> ₁	Повторение измерений	5.6e-2	1	5.6e-2	3.4e-2	1	3.4e-2	3.6e-2	1	3.6e-2	
<i>u</i> ₂	Толщина образца	5.1e-3	3.03	1.5e-2	2.5e-3	3.03	7.6e-3	1.3e-3	3.01	3.8e-3	
<i>u</i> ₃	Временные интервалы	1.8e-2	1	1.8e-2	1.3e-2	1	1.3e-2	1.4e-2	1	1.4e-2	
u_{cw}	Скорость звука	5.4e-3	4.03	2.2e-2	5.4e-3	4.03	2.2e-2	5.4e-3	4.01	2.2e-2	
u_4	Температура воды	5.4e-3	1	5.4e-3	5.4e-3	1	5.4e-3	5.4e-3	1	5.4e-3	
<i>u</i> ₅	Атмосферное давление	0.5	1e-4	5e-5	0.5	1e-4	5e-5	0.5	1e-4	5e-5	
<i>u</i> ₆	Температурная зависимость	3.4e-3	1	3.4e-3	3.4e-3	1	3.4e-3	3.4e-3	1	3.4e-3	
<i>u</i> ₇	Дифракция			neg.			neg.			neg.	
<i>u</i> _c	Суммарная неопределенность, %			0.065			0.043			0.045	
U (k=2)	Расширенная неопределенность, %			0.130			0.086			0.090	

Таблица 7.6.5 – Бюджет неопределенности на частоте 10 МГц

	Образец	Стег	кло БК8 20)- № 1	Стал	њ 40X13 10)-Nº2	Стал	ь 40Х13 20)-Nº1
Изм	еренная скорость, м/с		5711.2			6006.5			6004.2	
	Примечание	$u(x_{\rm i}) / \%$	Ci	$c_i u(x_i) / $ %	$u(x_{\rm i}) / \%$	Ci	$c_i u(x_i) / \%$	$u(x_{\rm i}) / \%$	Ci	$c_i u(x_i) / \%$
<i>u</i> ₁	Повторение измерений	4.2e-2	1	4.2e-2	4.8e-2	1	4.8e-2	4.5e-2	1	4.5e-2
<i>u</i> ₂	Толщина образца	2.5e-3	2.86	7.2e-3	4.6e-3	3.05	1.4e-2	2.4e-3	3.06	7.2e-3
<i>u</i> ₃	Временные интервалы	1.4e-2	1	1.4e-2	1.8e-2	1	1.8e-2	1.6e-2	1	1.6e-2
u_{cw}	Скорость звука	5.4e-3	3.86	2.1e-2	5.4e-3	4.05	2.2e-2	5.4e-3	4.06	2.2e-2
u_4	Температура воды	5.4e-3	1	5.4e-3	5.4e-3	1	5.4e-3	5.4e-3	1	5.4e-3
<i>u</i> ₅	Атмосферное давление	0.5	1e-4	5e-5	0.5	1e-4	5e-5	0.5	1e-4	5e-5
<i>u</i> ₆	Температурная зависимость	3.5e-3	1	3.5e-3	3.4e-3	1	3.4e-3	3.4e-3	1	3.4e-3
<i>u</i> ₇	Дифракция			neg.			neg.			neg.
<i>u</i> _c	Суммарная неопределенность, %			0.050			0.058			0.053
U (k=2)	Расширенная неопределенность, %			0.100			0.116			0.106

Таблица 7.6.6 – Бюджет неопределенности на частоте 10 МГц

8 РЕЗУЛЬТАТЫ СЛИЧЕНИЙ

8.1 Результаты сличений и проверка согласованности данных

Результаты измерений скорости распространения продольных ультразвуковых волн, представленные участниками сличений, сведены в таблицы 8.1-8.2. Результаты измерений в графической форме приведены в Приложении А.

Значения скорости распространения продольных ультразвуковых волн приведены к температуре 20 °C, либо отклонение температуры образцов и иммерсионной жидкости при измерениях не превышало ± 0.5 °C.

Для оценки согласованности результатов сличения рассчитано опорное значение сличений C_{ref} как среднее взвешенное для множества согласованных данных. Проверка согласованности данных сличений производится при помощи критерия χ^2 в соответствии с процедурой, описанной в [3, 5].

Опорное значение C_{ref} (среднее взвешенное) и стандартная неопределенность опорного значения $u(C_{ref})$ рассчитываются по формулам

$$C_{ref} = \frac{\sum_{i=1}^{n} \frac{C_i}{u^2(C_i)}}{\sum_{i=1}^{n} \frac{1}{u^2(C_i)}},$$
(8.1)

$$u^{2}(C_{ref}) = \frac{1}{\sum_{i=1}^{n} \frac{1}{u^{2}(C_{i})}},$$
(8.2)

где C_i , $u(C_i)$ – результаты измерений скорости продольных ультразвуковых волн и суммарная неопределенность измерений, представленные *i*-ми участниками сличений, соответственно; n – число участников.

На основе результатов измерений C_i и соответствующих неопределенностей $u(C_i)$ вычисляется значение критерия χ^2 по формуле

$$\chi^{2} = \sum_{1}^{n} \frac{(C_{i} - C_{ref})^{2}}{u^{2}(C_{i})}.$$
(8.3)

Согласованность данных сличений подтверждается, если вычисленное значение критерия не превосходит критического значения $\chi^2_{0,95}$ для уровня доверия 0,95 и числа степеней свободы *n*-1

$$\chi^2 < \chi^2_{0.95} \,. \tag{8.4}$$

Если условие (8.4) не выполняется, то определяется тот НМИ, который обеспечивает максимум критерия E_n . Данные этого НМИ временно исключаются из рассмотрения, и процедура последовательно повторяется для группы оставшихся данных.

Критерий Е_n вычисляется по формуле

$$E_n = \frac{|C_i - C_{ref}|}{2\sqrt{u^2(C_i) - u^2(C_{ref})}} = \frac{|d_i|}{2u(d_i)}.$$
(8.5)

В целом, можно отметить согласованность большинства результатов. В таблицах 8.1-8.2 полужирным шрифтом выделены несогласованные данные сличений.

Для оценки сопоставимости результатов, полученных участниками сличений, выполнен расчёт степеней эквивалентности эталонов. Степень эквивалентности эталона (отклонение результата НМИ-участника от опорного значения) d_i и неопределенность отклонения $u(d_i)$ вычисляются в соответствии с [4, 5] по формулам

$$d_i = C_i - C_{ref} , \qquad (8.6)$$

$$u(d_i) = \sqrt{u^2(C_i) - u^2(C_{ref})}.$$
(8.7)

Расширенная неопределенность отклонения $U(d_i)$ равна

$$U(d_i) = 2u(d_i)$$
. (8.8)

Результаты первичной оценки согласованности данных сличений, представленных участниками, приведены в таблицах 8.3-8.8. Полужирным шрифтом выделены значения критерия $E_n > 1$. В таблицах 8.3-8.8 указаны:

- исходные опорные значения сличения и их неопределенности, рассчитанные по результатам измерений всех участников;

- результаты проверки согласованности данных сличений при помощи критерия χ²;

- отклонения участников d_i от опорного значения (степень эквивалентности) и расширенная неопределенность отклонения $2u(d_i)$ при уровне доверия 0,95;

- значения критерия *E_n*.

Исходные данные могут быть признаны согласованными для всех НМИ-участников для образцов №1 и №5. Для других образцов критерий χ^2 больше критического значения. Выявление несогласованных данных проведено в Приложении В и показало следующее:

1) Результаты измерений ГП «Укрметртестстандарт» для образцов №2, №3, №4 и №6 на всех или некоторых частотах являются несогласованными.

2) Результаты измерений Дальневосточного филиала ФГУП «ВНИИФТРИ» (ГЭТ) и БелГИМ имеют несогласованные данные на частоте 2,25-2,5 МГц.

Так как в сличениях выявлены несогласованные данные, с целью анализа причин отдельно рассмотрены результаты измерений толщины образцов (Приложение С) и результаты измерений времени распространения продольных ультразвуковых волн (Приложение D).

В качестве дополнительной информации в Приложении Е представлены попарные степени эквивалентности эталонов [4, 5].

Порядок перечисления и нумерация НМИ-участников сличений в таблицах и на графиках соответствуют хронологическому порядку проведения измерений:

1 – Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия, ГЭТ 189-2014;

2-БелГИМ, Беларусь, УИСУ-3 №01;

3 – ГП «Днепрстандартметрология», Украина, УИСУ-01 №2;

4 – ГП «Укрметртестстандарт», Украина, УИСУ-01 №3;

5 – НИМ, Китай, National measurement standard for the calibration of fundamental ultrasonic properties of materials, with standard identifier [2011] 237;

6 – Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия, ИЗУ-1 №1, эхо-импульсный метод (обозначение в таблицах ЭИ);

7 – Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия, ИЗУ-1 №1, резонансный метод (обозначение в таблицах Р).

Образец	Частота,	Частота, Параметр НМИ МГц РИНИФТРИ Лионтоточност Унтусствоот РИНИФТРИ РИНИФТРИ								
	MГц		ВНИИФТРИ (ГЭТ)	БелГИМ	Днепрстандарт- метрология	Укрметртест- стандарт	НИМ	ВНИИФТРИ (ИЗУ, ЭИ)	ВНИИФТРИ (ИЗУ, Р)	значение <i>C_{ref}</i> , м/с
Образец	5	С, м/с	5967,21	5967,00	5968,98	5972,60	5964,70	5967,65	5966,19	5967,43
No] Kaanu KB	5	$u(C_i), {\rm M/c}$	0,87	0,83	1,84	2,00	3,94	1,70	1,30	0,48
10-№05	10	С, м/с	5967,21	5965,05	5966,00	5972,51	5964,90	5968,06	5965,86	5966,96
	10	$u(C_i), {\rm M/c}$	0,87	1,20	2,25	1,99	3,88	1,40	1,30	0,52
Образец	2 25 2 5	С, м/с	5961,85	5965,33	5963,21	5969,51	5959,50	5963,79	5963,41	5962,09
№2 Крарц КВ	2,25-2,5	$u(C_i),$ м/с	0,41	0,74	1,36	1,11	2,68	2,44	1,19	0,37
кварц КВ 20-№05	5	С, м/с	5961,85	5964,14	5962,61	5967,80	5960,50	5963,29	5962,31	5962,42
	5	$u(C_i),$ м/с	0,41	0,74	1,80	1,11	3,16	1,30	1,18	0,32
	10	С, м/с	5961,85	5962,29	5960,99	5966,87	5958,70	5964,39	5961,88	5962,01
	10	$u(C_i), {\rm M/c}$	0,41	1,10	2,16	1,11	2,56	1,22	1,18	0,34
Образец	2 25 2 5	С, м/с	5934,56	5935,03	5936,14	5937,94	5936,40	5934,97	5935,50	5934,78
N <u>∘</u> 3	2,25-2,5	$u(C_i), $ м/с	0,30	0,70	1,28	0,69	2,85	2,35	1,17	0,26
Кварц	5	С, м/с	5934,56	5935,40	5935,29	5937,85	5936,80	5934,91	5934,86	5934,77
КУ-1 40-No1	5	$u(C_i), {\rm M/c}$	0,30	0,70	1,76	0,70	2,67	1,21	1,17	0,26
+0 3121	10	С, м/с	5934,56	5934,88	5935,42	5937,77	5936,70	5935,67	5935,10	5934,73
	10	$u(C_i), \mathrm{M/c}$	0,30	1,00	2,10	0,70	2,67	1,18	1,17	0,27

Таблица 8.1 – Результаты сличений

Образец	Частота,	Параметр				НМИ				Опорное
	МГц		ВНИИФТРИ (ГЭТ)	БелГИМ	Днепрстандарт- метрология	Укрметртест- стандарт	НИМ	ВНИИФТРИ (ИЗУ, ЭИ)	ВНИИФТРИ (ИЗУ, Р)	значение <i>C_{ref}</i> , м/с
Образец	2 25 2 5	С, м/с	5710,71	5714,26	5710,97	5715,13	5710,90	5709,51	5709,54	5710,61
N <u>∘</u> 4	2,23-2,5	$u(C_i), {\rm M/c}$	0,40	0,70	1,30	1,02	2,86	2,40	1,19	0,36
Стекло	5	С, м/с	5710,71	5711,06	5708,51	5713,74	5712,30	5710,87	5709,89	5710,96
DK8 20№1	5	$u(C_i), {\rm M/c}$	0,40	0,70	1,72	1,02	3,88	1,30	1,19	0,31
2051-1	10	С, м/с	5710,71	5710,32	5707,54	5714,88	5711,20	5711,17	5709,93	5710,57
	10	$u(C_i), {\rm M/c}$	0,40	0,99	2,06	1,03	2,86	1,22	1,19	0,34
Образец	5	С, м/с	6004,29	6005,34	6007,30	6007,35	6006,30	6001,61	6003,42	6004,69
№5 Сталь	5	$u(C_i), $ м/с	0,77	0,83	1,84	1,86	3,84	1,64	1,25	0,46
40X13	10	С, м/с	6004,29	6003,58	6002,75	6002,63	6006,50	6002,96	6001,57	6003,44
10-JNº2	10	$u(C_i), {\rm M/c}$	0,77	1,20	2,24	1,85	3,48	1,39	1,24	0,49
Образец	2 25 2 5	С, м/с	6002,02	6007,46	6004,12	6009,04	6003,40	6006,73	6006,17	6006,99
Nº6	2,25-2,5	$u(C_i),$ м/с	1,76	0,75	1,38	1,07	2,64	2,52	1,20	0,49
Сталь 40У12	5	С, м/с	6002,02	6005,73	6003,63	6009,23	6002,50	6004,73	6003,79	6004,65
40X13 20№1	5	$u(C_i), \mathrm{M/c}$	1,76	0,75	1,82	1,07	3,12	1,40	1,20	0,52
2031-1	10	С, м/с	6002,02	6005,16	6002,52	6007,72	6004,20	6004,16	6002,45	6003,67
	10	$u(C_i), \mathrm{M/c}$	1,76	1,10	2,16	1,07	3,18	1,22	1,20	0,59

Таблица 8.2 – Результаты сличений

Образец	№	НМИ	<i>f</i> , МГц	<i>С</i> _{<i>i</i>} , м/с	$u(C_i),$	<i>С_{ref}</i> , м/с	$u(C_{ref}),$	χ2	$\chi^{2}_{0.95}$	Согл.	<i>d</i> _{<i>i</i>} , м/с	$2u(d_i),$	E_n
					м/с		м/с			χ2		м/с	
Образец	1	ВНИИФТРИ (ГЭТ)	0,525	5967,22	0,87						-0,22	1,45	0,15
Nº1	2	БелГИМ	4,5	5967,00	0,83						-0,43	1,35	0,32
Кварц КВ	3	Днепрстандартметрология	5	5968,98	1,84						1,55	3,55	0,44
10-№05	4	Укрметртестстандарт	5	5972,60	2,00	5967,43	0,48	9,122	12,592	Да	5,17	3,88	1,33
	5	НИМ	5	5964,70	3,94						-2,73	7,82	0,35
	6	ВНИИФТРИ (ИЗУ, ЭИ)	5	5967,65	1,70						0,21	3,26	0,07
	7	ВНИИФТРИ (ИЗУ, Р)	5,12	5966,19	1,30						-1,24	2,42	0,52
	1	ВНИИФТРИ (ГЭТ)	0,525	5967,22	0,87						0,26	1,39	0,19
	2	БелГИМ	10	5965,05	1,20						-1,91	2,16	0,89
	3	Днепрстандартметрология	10	5966,00	2,25						-0,96	4,38	0,22
	4	Укрметртестстандарт	10	5972,51	1,99	5966,96	0,52	12,207	12,592	Да	5,56	3,84	1,45
	5	НИМ	10	5964,90	3,88						-2,05	7,69	0,27
	6	ВНИИФТРИ (ИЗУ, ЭИ)	10	5968,06	1,40						1,11	2,66	0,43
	7	ВНИИФТРИ (ИЗУ, Р)	9,93	5965,86	1,30						-1,09	2,38	0,46

Таблица 8.3 – Проверка согласованности результатов измерений

Данные НМИ для образца №1 согласованы на всех частотах.

Образец	№	НМИ	<i>f</i> , МГц	<i>С</i> _{<i>i</i>} , м/с	$u(C_i),$	<i>С_{ref}</i> , м/с	$u(C_{ref}),$	χ2	$\chi^{2}_{0.95}$	Согл.	<i>d</i> _{<i>i</i>} , м/с	$2u(d_i),$	E_n
					м/с		м/с		100,95	χ2		м/с	
Образец	1	ВНИИФТРИ (ГЭТ)	0,525	5961,85	0,41						-1,41	0,53	2,69
№2	2	БелГИМ	2,3	5965,33	0,74						2,02	1,34	1,54
Кварц КВ	3	Днепрстандартметрология	2,5	5963,21	1,36						-0,10	2,65	0,02
20-№05	4	Укрметртестстандарт	2,5	5969,51	1,11	5963,26	0,31	53,215	12,592	Нет	6,20	2,14	2,92
	5	НИМ	2,25	5959,50	2,68						-3,82	5,32	0,71
	6	ВНИИФТРИ (ИЗУ, ЭИ)	2,5	5963,79	2,44						1,35	4,84	0,11
	7	ВНИИФТРИ (ИЗУ, Р)	2,54	5963,41	1,19						0,09	2,30	0,06
	1	ВНИИФТРИ (ГЭТ)	0,525	5961,85	0,41						-0,97	0,53	1,87
	2	БелГИМ	4,5	5964,14	0,74						1,27	1,34	0,97
	3	Днепрстандартметрология	5	5962,61	1,80						-0,27	3,55	0,07
	4	Укрметртестстандарт	5	5967,80	1,11	5962,84	0,31	29,464	12,592	Нет	4,92	2,15	2,30
	5	НИМ	5	5960,50	3,16						-2,38	6,29	0,37
	6	ВНИИФТРИ (ИЗУ, ЭИ)	5	5963,29	1,30						0,41	2,52	0,18
	7	ВНИИФТРИ (ИЗУ, Р)	4,93	5962,31	1,18						-0,57	2,28	0,23
	1	ВНИИФТРИ (ГЭТ)	0,525	5961,85	0,41						-0,57	0,49	1,21
	2	БелГИМ	10	5962,29	1,10						-0,19	2,10	0,07
	3	Днепрстандартметрология	10	5960,99	2,16						-1,50	4,27	0,34
	4	Укрметртестстандарт	10	5966,87	1,11	5962,44	0,33	23,703	12,592	Нет	4,39	2,10	2,11
	5	НИМ	10	5958,70	2,56						-3,78	5,08	0,74
	6	ВНИИФТРИ (ИЗУ, ЭИ)	10	5964,39	1,22						1,91	2,35	0,83
	7	ВНИИФТРИ (ИЗУ, Р)	10,01	5961,88	1,18						-0,60	2,45	0,25

Таблица 8.4 – Проверка согласованности результатов измерений

Данные НМИ для образца №2 не согласованы на всех частотах

Образец	N⁰	НМИ	<i>f</i> , МГц	<i>С</i> _{<i>i</i>} , м/с	$u(C_i),$	<i>С_{ref}</i> , м/с	$u(C_{ref}),$	χ2	$\chi^{2}_{0.95}$	Согл.	<i>d</i> _{<i>i</i>} , м/с	$2u(d_i),$	E_n
					м/с		м/с		<i>v</i> 0, <i>y</i> 5	χ2		м/с	
Образец	1	ВНИИФТРИ (ГЭТ)	0,525	5934,59	0,30						-0,58	0,35	1,66
Nº3	2	БелГИМ	2,3	5935,03	0,70						-0,14	1,31	0,11
Кварц	3	Днепрстандартметрология	2,5	5936,14	1,28						0,97	2,51	0,39
КУ-1	4	Укрметртестстандарт	2,5	5937,94	0,69	5935,17	0,24	20,732	12,592	Нет	2,77	1,29	2,14
40-№1	5	НИМ	2,25	5936,40	2,85						1,23	5,68	0,22
	6	ВНИИФТРИ (ИЗУ, ЭИ)	2,5	5934,97	2,35	1					-0,20	4,67	0,04
	7	ВНИИФТРИ (ИЗУ, Р)	2,52	5935,50	1,17						0,33	2,29	0,14
	1	ВНИИФТРИ (ГЭТ)	0,525	5934,59	0,30						-0,44	0,34	1,28
	2	БелГИМ	4,5	5935,40	0,70						0,37	1,31	0,28
	3	Днепрстандартметрология	5	5935,29	1,76						0,26	3,49	0,07
	4	Укрметртестстандарт	5	5937,85	0,70	5935,03	0,25	14,173	12,592	Нет	2,82	1,61	1,76
	5	НИМ	5	5936,80	2,67						1,77	5,32	0,33
	6	ВНИИФТРИ (ИЗУ, ЭИ)	5	5934,91	1,21						-0,12	2,37	0,05
	7	ВНИИФТРИ (ИЗУ, Р)	5,04	5934,86	1,17						-0,17	2,29	0,07
	1	ВНИИФТРИ (ГЭТ)	0,525	5934,59	0,30						-0,50	0,33	1,52
	2	БелГИМ	10	5934,88	1,00						-0,22	1,94	0,11
	3	Днепрстандартметрология	10	5935,42	2,10						0,33	4,17	0,08
	4	Укрметртестстандарт	10	5937,77	0,70	5935,09	0,25	16,886	12,592	Нет	2,68	1,37	1,95
	5	НИМ	10	5936,70	2,67						1,61	5,32	0,30
	6	ВНИИФТРИ (ИЗУ, ЭИ)	10	5935,67	1,18						0,58	2,31	0,25
	7	ВНИИФТРИ (ИЗУ, Р)	10,00	5935,10	1,17						0,01	2,29	0,00

Таблица 8.5 – Проверка согласованности результатов измерений

Данные НМИ для образца №3 не согласованы на всех частотах

Образец	N⁰	НМИ	<i>f</i> , МГц	<i>С</i> _{<i>i</i>} , м/с	$u(C_i),$	<i>С_{ref}</i> , м/с	$u(C_{ref}),$	χ2	$\chi^{2}_{0.95}$	Согл.	<i>d</i> _{<i>i</i>} , м/с	$2u(d_i),$	E_n
					м/с		м/с		<i>v</i> 0,75	χ2		м/с	
Образец	1	ВНИИФТРИ (ГЭТ)	0,525	5710,73	0,40						-1,00	0,54	1,84
Nº4	2	БелГИМ	2,3	5714,26	0,70						2,53	1,26	2,01
Стекло	3	Днепрстандартметрология	2,5	5710,97	1,30						-0,76	2,53	0,30
БК8	4	Укрметртестстандарт	2,5	5715,13	1,02	5711,73	0,31	34,762	12,592	Нет	3,40	1,94	1,75
20 -№ 1	5	НИМ	2,25	5710,90	2,86						-0,83	5,69	0,15
	6	ВНИИФТРИ (ИЗУ, ЭИ)	2,5	5709,51	2,40	1					-2,23	4,76	0,47
	7	ВНИИФТРИ (ИЗУ, Р)	2,42	5709,54	1,19						-2,19	2,30	0,95
	1	ВНИИФТРИ (ГЭТ)	0,525	5710,73	0,40						-0,22	0,54	0,41
	2	БелГИМ	4,5	5711,06	0,70						0,10	1,26	0,08
	3	Днепрстандартметрология	5	5708,51	1,72						-2,45	3,38	0,72
	4	Укрметртестстандарт	5	5713,74	1,02	5710,96	0,31	10,730	12,592	Да	2,79	1,95	1,43
	5	НИМ	5	5712,30	3,88						1,34	7,74	0,17
	6	ВНИИФТРИ (ИЗУ, ЭИ)	5	5710,87	1,30						-0,09	2,53	0,04
	7	ВНИИФТРИ (ИЗУ, Р)	4,99	5709,89	1,19						-1,07	2,30	0,46
	1	ВНИИФТРИ (ГЭТ)	0,525	5710,73	0,40						-0,27	0,51	0,53
	2	БелГИМ	10	5710,32	0,99						-0,68	1,87	0,36
	3	Днепрстандартметрология	10	5707,54	2,06						-3,47	4,07	0,85
	4	Укрметртестстандарт	10	5714,88	1,03	5711,00	0,32	19,061	12,592	Нет	3,88	1,94	2,01
	5	НИМ	10	5711,20	2,86						0,20	5,68	0,03
	6	ВНИИФТРИ (ИЗУ, ЭИ)	10	5711,17	1,22						0,17	2,35	0,07
	7	ВНИИФТРИ (ИЗУ, Р)	9,98	5709,93	1,19						-1,07	2,29	0,47

Таблица 8.6 – Проверка согласованности результатов измерений

Данные НМИ для образца №4 согласованы на частоте 5 МГц и не согласованы на частотах 2,5 и 10 МГц

Образец	№	НМИ	<i>f</i> , МГц	<i>Сi</i> , м/с	$u(C_i),$	<i>С_{ref}</i> , м/с	$u(C_{ref}),$	χ2	$\chi^{2}_{0.95}$	Согл.	<i>d</i> _{<i>i</i>} , м/с	$2u(d_i),$	E_n
					м/с		м/с		100,95	χ2		м/с	
Образец	1	ВНИИФТРИ (ГЭТ)	0,525	6004,32	0,77						-0,37	1,24	0,30
N⁰5	2	БелГИМ	4,5	6005,34	0,83						0,65	1,39	0,47
Сталь	3	Днепрстандартметрология	5	6007,30	1,84						2,61	3,56	0,73
40X13	4	Укрметртестстандарт	5	6007,35	1,86	6004,69	0,46	9,625	12,592	Дa	2,66	3,63	0,73
10 -№ 2	5	НИМ	5	6006,30	3,84						1,61	7,63	0,21
	6	ВНИИФТРИ (ИЗУ, ЭИ)	5	6001,61	1,64						-3,08	3,15	0,98
	7	ВНИИФТРИ (ИЗУ, Р)	4,98	6003,42	1,25						-1,27	2,33	0,55
	1	ВНИИФТРИ (ГЭТ)	0,525	6004,32	0,77						0,88	1,18	0,75
	2	БелГИМ	10	6003,58	1,20	6003,44		4,777	12,592	Да	0,14	2,19	0,06
	3	Днепрстандартметрология	10	6002,75	2,24						-0,69	4,37	0,16
	4	Укрметртестстандарт	10	6002,63	1,85		0,49				-0,81	3,57	0,23
	5	НИМ	10	6006,50	3,48						3,06	6,89	0,44
	6	ВНИИФТРИ (ИЗУ, ЭИ)	10	6002,96	1,39						-0,48	2,60	0,18
	7	ВНИИФТРИ (ИЗУ, Р)	9,96	6001,57	1,24						-1,87	2,28	0,82

Таблица 8.7 – Проверка согласованности результатов измерений

Данные НМИ для образца №5 согласованы на всех частотах

Образец	N⁰	НМИ	<i>f</i> , МГц	<i>С</i> _{<i>i</i>} , м/с	$u(C_i),$	<i>С_{ref}</i> , м/с	$u(C_{ref}),$	χ2	$\chi^{2}_{0.95}$	Согл.	<i>d</i> _{<i>i</i>} , м/с	$2u(d_i),$	E_n
					м/с		м/с		10 0,95	χ2		м/с	
Образец	1	ВНИИФТРИ (ГЭТ)	0,525	6002,02	1,76						-4,61	3,39	1,36
Nº6	2	БелГИМ	2,3	6007,46	0,75						0,83	1,17	0,71
Сталь	3	Днепрстандартметрология	2,5	6004,12	1,38						-2,51	2,59	0,97
40X13	4	Укрметртестстандарт	2,5	6009,04	1,07	6006,63	0,49	18,070	12,592	Нет	2,41	1,92	1,25
20-№1	5	НИМ	2,25	6003,40	2,64						-3,23	5,20	0,62
	6	ВНИИФТРИ (ИЗУ, ЭИ)	2,5	6006,73	2,52						0,11	4,95	0,02
	7	ВНИИФТРИ (ИЗУ, Р)	2,55	6006,17	1,20						-0,46	2,21	0,21
	1	ВНИИФТРИ (ГЭТ)	0,525	6002,02	1,76						-3,47	3,39	1,02
	2	БелГИМ	4,5	6005,73	0,75						0,24	1,17	0,20
	3	Днепрстандартметрология	5	6003,63	1,82						-1,87	3,52	0,53
	4	Укрметртестстандарт	5	6009,23	1,07	6005,50	0,47	20,030	12,592	Нет	3,73	1,97	1,90
	5	НИМ	5	6002,50	3,12						-3,00	6,17	0,49
	6	ВНИИФТРИ (ИЗУ, ЭИ)	5	6004,73	1,40						-0,77	2,64	0,29
	7	ВНИИФТРИ (ИЗУ, Р)	4,96	6003,79	1,20						-1,71	2,21	0,77
	1	ВНИИФТРИ (ГЭТ)	0,525	6002,02	1,76						-2,59	3,36	0,77
	2	БелГИМ	10	6005,16	1,10						0,55	1,94	0,28
	3	Днепрстандартметрология	10	6002,52	2,16						-2,09	4,19	0,50
	4	Укрметртестстандарт	10	6007,72	1,07	6004,62	0,52	15,168	12,592	Нет	3,10	1,87	1,65
	5	НИМ	10	6004,20	3,18						-0,41	6,27	0,07
	6	ВНИИФТРИ (ИЗУ, ЭИ)	10	6004,16	1,22						-0,45	2,21	0,21
	7	ВНИИФТРИ (ИЗУ, Р)	10,06	6002,45	1,20						-2,21	2,16	1,00

Таблица 8.8 – Проверка согласованности результатов измерений

Данные НМИ для образца №6 не согласованы на всех частотах.

8.2 Анализ несогласованных данных

8.2.1 Результаты измерений толщины образцов

Разброс результатов измерений толщины образцов оказался достаточно заметным и для двух отдельно взятых лабораторий может превышать заявленные неопределенности (Приложение С). Видимо, для более корректной оценке результатов сличений по скорости распространения продольных ультразвуковых волн участникам следует использовать общее значение толщины, например, среднее арифметическое или среднее взвешенное.

Результаты измерений толщины ГП «Днепрстандартметрология» для образцов №2, 3, 4, 6 (номинальная толщина 20 и 40 мм) имеют систематическую погрешность минус 5-8 мкм относительно среднего арифметического значения (Приложение С). Заявленная расширенная неопределенность измерений толщины равна 1,2 мкм. Вероятно, это может быть связано с применяемой методикой или средством измерений. При этом данные ГП «Днепрстандартметрология» по скорости продольных ультразвуковых волн остаются согласованными для всех образцов за счет заявленной неопределенности измерений. В отчете результаты данного участника приведены в соответствии с представленным протоколом.

Отклонения ГП «Днепрстандартметрология» в измеренной толщине указанных образцов вызывают определенное смещение опорного значения сличений для скорости продольных ультразвуковых волн. В большинстве случаев это смещение незначительно (в рамках неопределенности опорного значения), вследствие определения опорного значения как среднего взвешенного и малого веса результатов данного участника при заявленной неопределенности измерений. Однако для образцов №2 и №4 на частоте 2,5 МГц данный фактор приводит к формальной неогласованности результатов БелГИМ.

8.2.2 Дальневосточный филиал ФГУП «ВНИИФТРИ» (ГЭТ 189-2014)

Образец №6, частота 2,5 МГц. Образец №6 из стали 40Х13 имеет наибольшую частотную дисперсию скорости из всех образцов, относительное значение которой было оценено как $5 \cdot 10^{-4}$. Для сравнения, в образцах из стекол дисперсия менее $1 \cdot 10^{-4}$. Дисперсия отрицательная, и для низких частот скорость продольных ультразвуковых волн больше. Это приводит к увеличению длительности переднего фронта импульса как волнового пакета при распространении и, соответственно, к дополнительной неопределенности временной привязки к акустическим импульсам. Типичная осциллограмма акустических импульсов приведена на рис. 8.1.

Рис. 8.1. Форма акустических импульсов в образце №6 Сталь 40Х13. Ось Х: 20 нс/дел.

Измерения временных интервалов были проведены с привязкой совмещаемых импульсов, как показано на рисунке. Очевидно, методика измерений в таких материалах требует доработки. Например, для частоты 2,5 МГц можно применить временную привязку по уровню 0,1. Измеренная скорость продольных волн в этом случае составляет C_L =6005,5±3,5 м/с, что согласуется с результатами сличений при заявленной неопределенности. Оценка дисперсии 6·10⁻⁴ также обеспечивает согласованность данных.

8.2.3 БелГИМ

Образцы №2 и №4, частота 2,5 МГц. Несогласованность результатов измерений отражает общую зависимость изменения измеряемых временных интервалов с частотой ультразвуковых волн, полученную в данных образцах для 3-х иммерсионных установок, реализующих эхо-импульсный метод (Приложение D). Временные интервалы на частоте 2,5 МГц меньше, чем для остальных установок, и выравниваются на частотах 5 и 10 МГц.

При этом результаты измерения временных интервалов хорошо совпадают для БелГИМ и ГП «Днепрстандартметрология» (отклонение менее 1 нс), но БелГИМ имеет меньшую заявленную неопределенность. В то же время, для БелГИМ и ДВФ ВНИИФТРИ (ГЭТ), как имеющих наименьшую заявленную неопределенность, получены отклонения от опорного значения по времени распространения продольных ультразвуковых волн, для которых значения критерия E_n (т.е., отношения отклонения от опорного значения к неопределенности) примерно одинаковы при противоположном знаке отклонений d_i (таблицы D.2 и D.4).

Расхождения результатов измерений между двумя группами эталонов в данном случае только частично могут быть обусловлены частотной дисперсией скорости (менее 10⁻⁴). Данный вопрос требует дополнительных исследований.

8.2.4 ГП «Укрметртестстандарт»

Образцы №2, №3, №4 и №6 на всех или отдельных частотах. Как видно из таблиц 4.1-4.2 и Приложения Е, измеренные значения скорости продольных ультразвуковых волн в данных образцах для ГП «Укрметртестстандарт» больше, чем у остальных участников сличений, включая эталоны, использующие аналогичные методы. Это свидетельствует о наличии систематической погрешности при измерениях, которая при заявленной неопределенности приводит к несогласованности результатов. Данная погрешность в основном связана с измерениями временных интервалов (Приложения С и D).

ГП «Укрметртестстандарт» не предоставил свои комментарии с анализом причин. По мнению БелГИМ, скорее всего, эти отклонения могут быть связаны с выбором полуволны ультразвуковых импульсов, на которой производилась временная привязка при измерении времени распространения продольных ультразвуковых волн. Например, измерения проводились не по максимальной волне, а по третьей, поэтому временные интервалы меньше, чем у БелГИМ и ГП «Днепрстандартметрология».

9 ЗАКЛЮЧЕНИЕ

В пилотных сличениях КООМЕТ, тема 706/RU/16, проведены сличения результатов измерений скорости распространения продольных ультразвуковых волн в твердых средах с использованием шести эталонов, в которых реализованы различные методы возбуждения и регистрации ультразвука (бесконтактные оптический и емкостный методы, пьезоэлектрический иммерсионный метод) и различные методы измерений скорости распространения продольных ультразвуковых волн (импульсный и резонансный методы, метод прохождения). Измерения впервые выполнены на 3-х частотах продольных ультразвуковых волн 2,25-2,5; 5 и 10 МГц с применением шести транспортируемых эталонов сравнения – мер скорости (образцов).

Основной целью пилотных сличений было проверка измерительных возможностей участников, опробование эталонов сравнения и способов их транспортировки, а также оценка воспроизводимости результатов измерений и выявление возможных расхождений результатов сличений.

Сличения показали согласованность большинства результатов измерений скорости распространения продольных ультразвуковых волн в применяемых эталонах сравнения для 4-х участников сличений: Дальневосточного филиала ФГУП «ВНИИФТРИ» (Россия), БелГИМ (Беларусь), ГП «Днепрстандартметрология» (Украина), НИМ (Китай). Оценка заявленных неопределенностей измерений участниками сличений проведена достаточно корректно. Уточнены схема сличений и способы транспортировки эталонов сравнения.

Расхождения, полученные на частоте продольных ультразвуковых волн 2,5 МГц, требуют проведения дополнительных исследований для определения причин.

Результаты измерений ГП «Укрметртестстандарт» (Украина) согласованы для двух образцов с наименьшей толщиной и показывают наличие систематической погрешности для остальных образцов на всех или отдельных частотах, в том числе в сравнении с аналогичными эталонами. Расхождения могут быть связаны с применяемой методикой измерений времени распространения продольных ультразвуковых волн или отклонением от нее.

Разброс результатов измерений толщины образцов оказался достаточно заметным. По-видимому, оценка результатов сличений должна производиться при одном для всех участников значении толщины. Например, может быть использовано среднее взвешенное.

Таким образом, цель данных пилотных сличений может считаться достигнутой. Вместе с тем, сличения выявили несколько проблем, решение которых, после анализа участниками своих результатов, требует проведения новых сличений в данной области измерений.
ЛИТЕРАТУРА

1. COOMET R/GM/11:2017. Рекомендация КООМЕТ. Положение о сличениях эталонов национальных метрологических институтов КООМЕТ.

2. МИ 1800-87 «ГСИ. Скорость распространения продольных ультразвуковых колебаний в стандартных образцах и акустических нагрузках для ультразвукового неразрушающего контроля. Методика выполнения измерений».

3. СООМЕТ R/GM/19:2016. Рекомендация КООМЕТ. «Руководство по оцениванию данных дополнительных сличений КООМЕТ».

4. СООМЕТ R/GM/14:2016. Рекомендация КООМЕТ. «Руководство по оцениванию данных ключевых сличений КООМЕТ».

5. Cox M. G. The evaluation of key comparison data. Metrologia. 2002. V. 39 P. 589-595.

Приложение А. Результаты измерений в графической форме

Результаты, полученные от НМИ-участников сличений, представлены ниже в графической форме. Опорные значения сличения и их неопределенности для каждого образца на каждой частоте рассчитаны <u>по результатам измерений всех участников</u>, без учета несогласованных данных.

Обозначения номеров участников сличений на графиках соответствуют хронологическому порядку проведения измерений согласно графику сличений:

1 – Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия, ГЭТ 189-2014;

2-БелГИМ, Беларусь, УИСУ-3 №01;

3 – ГП «Днепрстандартметрология», Украина, УИСУ-01 №2;

4 – ГП «Укрметртестстандарт», Украина, УИСУ-01 №3;

5 – НИМ, Китай, National measurement standard for the calibration of fundamental ultrasonic properties of materials, with standard identifier [2011] 237;

6 – Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия, ИЗУ-1 №1, эхо-импульсный метод;

7 – Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия, ИЗУ-1 №1, резонансный метод.

Приложение В. Выявление несогласованных данных

Выявление несогласованных данных сличения производится при помощи критерия χ^2 согласно процедуре, описанной в [3, 5].

На основе результатов измерений и соответствующих неопределенностей C_i и $u(C_i)$, представленных *i*-ми участниками сличений, вычисляется значение критерия χ^2 по формуле (8.3).

Определяется тот НМИ, который обеспечивает максимум критерия E_n . Критерий E_n вычисляется по формуле (8.5). Далее данные этого НМИ временно исключаются из рассмотрения, и процедура повторяется для группы оставшихся данных.

Последовательное исключение данных повторяется до тех пор, пока не будет выполнено условие (8.4) для группы оставшихся данных. Опорное значение сличения C_{ref} рассчитывается на основе множества согласованных данных сличения.

Минимальная стандартная неопределенность, которая может быть заявлена НМИ при выполнении измерений/калибровок (СМС), рассмотрена в [3], раздел 5.4.

Рассмотрены три случая, когда для согласованных данных значение $E_n < 1$, значение $E_n > 1$ и для результатов измерений, не вошедших в множество согласованных данных.

Обозначения номеров участников сличений в таблицах соответствуют хронологическому порядку проведения измерений согласно графику сличений:

1 – Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия, ГЭТ 189-2014;

2-БелГИМ, Беларусь, УИСУ-3 №01;

3 – ГП «Днепрстандартметрология», Украина, УИСУ-01 №2;

4 – ГП «Укрметртестстандарт», Украина, УИСУ-01 №3;

5 – НИМ, Китай, National measurement standard for the calibration of fundamental ultrasonic properties of materials, with standard identifier [2011] 237;

6 – Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия, ИЗУ-1 №1, эхо-импульсный метод;

7 – Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия, ИЗУ-1 №1, резонансный метод.

В.1 Образец №2. Кварц КВ 20№05

Данные НМИ для образца №2 не согласованы на всех частотах.

Из таблицы 8.4 максимум критерия E_n на всех частотах наблюдается для участника №4. Данные этого НМИ временно исключаются из рассмотрения. Результаты повторной проверки соблюдения критерия χ^2 для остальных НМИ представлены в таблице В.1.

Образец	НМИ	<i>f</i> , МГц	<i>C_{ref}</i> , м/с	$u(C_{ref}),$	χ2	$\chi^{2}_{0.95}$	Согласов.	<i>d</i> _{<i>i</i>} , м/с	$2u(d_i),$	E_n
				м/с		<i>1</i> 0 ,75	χ2		м/с	
Образец	1	0,525						-0,88	0,49	1,78
N <u>o</u> 2	2	2,3						2,61	1,33	1,96
Кварц	3	2,5	5062 73	0.33	10 116	11.070	Цот	0,49	2,64	0,18
КВ	5	2,25	3902,73	0,33	19,110	11,070	1101	-3,23	5,32	0,61
20№05	6	2,5	5962,73 5 5962,42 5 5962,01					1,06	4,84	0,22
	7	2,54						0,68	2,29	0,30
	1	0,525			8,221			-0,58	0,50	1,15
	2	4,5		0,32		11,070		1,72	1,33	1,29
	3	5					Да	0,18	3,54	0,05
	5	5						-1,92	6,29	0,31
	6	5						0,86	2,52	0,34
	7	4,93						-0,11	2,27	0,05
	1	0,525						-0,17	0,45	0,37
	2	10						0,28	2,09	0,13
	3	10		0.34	5 038	11.070	Па	-1,03	4,27	0,24
	5	10		0,54	5,958	11,070	Да	-3,31	5,07	0,65
	6	10						2,37	2,34	1,01
	7	10,01						-0,13	2,26	0,06

Таблица В.1 – Результаты сличений без участника №4

На частотах 5 и 10 МГц данные для образца №2 согласованы для 6 эталонов, на частоте 2,5 МГц данные не согласованы.

Из таблицы В.1 максимум критерия E_n на частоте 2,5 МГц наблюдается для участника №2. Результаты повторной проверки соблюдения критерия χ^2 для остальных НМИ представлены в таблице В.2.

Таблица В.2– Результаты сличений на частоте 2,5 МГц без участников №4 и №2

Образец	НМИ	<i>f</i> , МГц	<i>С_{ref}</i> , м/с	$u(C_{ref}),$	χ2	$\chi^2_{0.95}$	Согласов.	<i>d</i> _{<i>i</i>} , м/с	$2u(d_i),$	E_n
				м/с		11 0,75	χ2		м/с	
Образец	1	0,525						-0,25	0,37	0,66
N <u></u> 2	3	2,5						1,12	2,62	0,43
Кварц	5	2,25	5962,09	0,37	3,687	9,488	Да	-2,59	5,31	0,49
КВ	6	2,5						1,70	4,83	0,35
20№05	7	2,54						1,32	2,27	0,58

На частоте 2,5 МГц данные для образца №2 согласованы для 5 эталонов.

В.2 Образец №3. Кварц КУ-1 40№1

Данные НМИ для образца №3 не согласованы на всех частотах.

Из таблицы 8.5 максимум критерия E_n на всех частотах наблюдается для участника №4. Данные этого НМИ временно исключаются из рассмотрения. Результаты повторной проверки соблюдения критерия χ^2 для остальных НМИ представлены в таблице В.3.

Образец	НМИ	<i>f</i> , МГц	C_{ref} , м/с	$u(C_{ref}),$	χ2	$\chi^{2}_{0.95}$	Согласов.	<i>d</i> _{<i>i</i>} , м/с	$2u(d_i),$	E_n
				м/с		11 0,95	χ2		м/с	
Образец	1	0,525						-0,19	0,30	0,63
N <u></u> ⁰3	2	2,3						0,25	1,30	0,19
Кварц	3	2,5	5934,78 5 5 5934,77	0.26	2 363	11.070	Па	1,36	2,51	0,54
КУ-1	5	2,25		0,20	2,303	11,070	Да	1,62	5,68	0,29
40 № 1	6	2,5						0,19	4,67	0,04
	7	2,52						0,72	2,28	0,31
	1	0,525		0,26	1,848			-0,17	0,31	0,56
	2	4,5				11,070		0,64	1,30	0,49
	3	5					Да	0,52	3,48	0,15
	5	5						2,03	5,32	0,38
	6	5						0,14	2,36	0,06
	7	5,04						0,09	2,28	0,04
	1	0,525	5934,73					-0,14	0,27	0,51
	2	10						0,15	1,93	0,08
	3	10		0.27	1 622	11.070	Па	0,69	4,17	0,17
	5	10		0,27	1,022	11,070	Да	1,97	5,31	0,37
	6	10						0,94	2,30	0,41
	7	10,01						0,37	2,28	0,16

Таблица В.3 – Результаты сличений без участника №4

Данные для образца №3 согласованы для 6 эталонов на всех частотах.

В.З Образец №4. Стекло БК8 20№1

Данные согласованы для всех НМИ на частоте 5 МГц, не согласованы на частотах 2,5 и 10 МГц.

Из таблицы 8.6 максимум критерия E_n на частоте 2,5 МГц наблюдается для участника №2, на частоте 10 МГц для участника №4. Данные этих НМИ временно исключаются из рассмотрения. Результаты повторной проверки соблюдения критерия χ^2 для остальных НМИ представлены в таблице В.4.

Образец	НМИ	<i>f</i> , МГц	<i>С_{ref}</i> , м/с	$u(C_{ref}),$	χ2	$\chi^{2}_{0.95}$	Согласов.	<i>d</i> _{<i>i</i>} , м/с	$2u(d_i),$	E_n
				м/с		10,95	χ2		м/с	
Образец	1	0,525						-0,39	0,45	0,87
<u>№</u> 4	3	2,5	- 5711,13 - 5710,57					-0,15	2,51	0,06
Стекло	4	2,5		0.34	18 576	11.070	Цот	4,00	1,92	2,08
БК8	5	2,25		0,54	10,570	11,070		-0,23	5,68	0,04
20№1	6	2,5				11.070		-1,62	4,75	0,34
	7	2,42						-1,59	2,28	0,70
	1	0,525						0,16	0,46	0,35
	2	10						-0,25	1,86	0,14
	3	10		0.34	2 070		По	-3,04	4,06	0,75
	5	10		0,34	2,970	11,070	Да	0,63	5,68	0,11
	6	10						0,60	2,34	0,25
	7	9,98						-0,64	2,28	0,28

Таблица В.4 – Результаты сличений без участников №2 (2,5 МГц) и №4 (10 МГц)

На частоте 10 МГц данные для образца №4 согласованы для 6 эталонов, на частоте 2,5 МГц данные не согласованы.

Из таблицы В.4 максимум критерия E_n на частоте 2,5 МГц наблюдается для участника №4. Результаты повторной проверки соблюдения критерия χ^2 для остальных НМИ представлены в таблице В.5.

Образец	НМИ	<i>f</i> , МГц	C_{ref} , м/с	$u(C_{ref}),$	χ2	$\chi^2_{0.95}$	Согласов.	<i>d</i> _{<i>i</i>} , м/с	$2u(d_i),$	E_n
				м/с		100,95	χ2		м/с	
Образец	1	0,525						0,12	0,38	0,31
N <u>∘</u> 4	3	2,5						0,36	2,50	0,14
Стекло	5	2,25	5710,61	0,36	1,198	9,488	Да	0,29	5,67	0,05
БК8	6	2,5						-1,11	4,74	0,23
20№1	7	2,42						-1,07	2,27	0,47

Таблица В.5 – Результаты сличений на частоте 2,5 МГц без участников №2 и №4

На частоте 2,5 МГц данные для образца №4 согласованы для 5 эталонов.

В.4 Образец №6. Сталь 40Х13 20№1

Данные НМИ для образца №6 не согласованы на всех частотах.

Из таблицы 8.8 максимум критерия E_n на частоте 2,5 МГц наблюдается для участника №1, на частотах 5 и 10 МГц для участника №4. Данные этих НМИ исключаются из рассмотрения. Результаты повторной проверки соблюдения критерия χ^2 для остальных НМИ представлены в таблице В.6.

Образец	НМИ	<i>f</i> , МГц	<i>С_{ref}</i> , м/с	$u(C_{ref}),$	χ2	$\chi^2_{0.95}$	Согласов.	<i>d</i> _{<i>i</i>} , м/с	$2u(d_i),$	E_n
				м/с			χ2		м/с	
Образец	2	2,3						0,47	1,14	0,41
Nº6	3	2,5						-2,86	2,58	1,11
Сталь	4	2,5	6006.00	0.40	10 684	11.070	По	2,05	1,90	1,08
40X13	5	2,25	0000,99	0,49	10,084	11,070	Да	-3,59	5,19	0,69
20№1	6	2,5	5 6004,65 6003,67					-0,25	4,94	0,05
	7	2,55						-0,82	2,19	0,37
	1	0,525		0,52	5,627			-2,63	3,36	0,78
	2	4,5				11,070		1,09	1,08	1,00
	3	5) Да	-1,02	3,49	0,29
	5	5						-2,15	6,15	0,35
	6	5						0,08	2,60	0,03
	7	4,96						-0,86	2,16	0,40
	1	0,525						-1,64	3,31	0,50
	2	10						1,49	1,85	0,81
	3	10		0.50	1 216	11 070	Па	-1,14	4,15	0,28
	5	10		0,57	4,210	11,070	Да	0,53	6,25	0,09
	6	10						0,50	2,13	0,23
	7	10,06						-1,22	2,08	0,58

Таблица В.6 – Результаты сличений без участников № 1 (2,5 МГц) и №4 (5 и 10 МГц)

Данные для образца №6 согласованы для 6 эталонов на всех частотах.

Приложение С. Результаты измерений толщины образцов

Результаты измерений толщины образцов *d*, полученные от НМИ-участников сличений, сведены в таблицу С.1. Среднее значение результатов измерений \overline{d} для каждого образца рассчитано как среднее арифметическое по данным всех НМИ. Расширенная неопределенность рассчитана как $U = 2u(\overline{d})$, где $u(\overline{d}) - \text{СКО}$ среднего арифметического.

Образец	Параметр			НМИ			Среднее	значение
		ВНИИФТРИ	БелГИМ	Днепрстандарт-	Укрметртест-	НИМ	\overline{d} , mm	$2u(\overline{d})$,
				метрология	стандарт			ММ
Образец №1	<i>d</i> , мм	9,9117	9,9073	9,9100	9,9145	9,911	0.0100	0.0023
Кварц КВ 10-№05	2и(d), мм	0,0019	0,0015	0,0012	0,0007	0,001	9,9109	0,0023
Образец №2	<i>d</i> , мм	19,9557	19,9550	19,9488	19,9567	19,957	10 05/6	0.0030
Кварц КВ 20-№05	2и(d), мм	0,0016	0,0019	0,0023	0,0005	0,001	19,9540	0,0030
Образец №3	<i>d</i> , мм	40,0523	40,0516	40,0451	40,0564	40,055	40.0521	0.0030
Кварц КУ-1 40-№1	2и(d), мм	0,0021	0,0018	0,0023	0,0003	0,001	40,0321	0,0039
Образец №4 Стекло	<i>d</i> , мм	20,0266	20,0254	20,0165	20,0261	20,030	20.0240	0.0045
БК8 20-№1	2и(d), мм	0,0018	0,0016	0,0023	0,0007	0,001	20,0249	0,0045
Образец №5 Сталь	<i>d</i> , мм	10,8384	10,8373	10,8415	10,8408	10,839	10.8304	0.0016
40X13 10-№2	2и(d), мм	0,0015	0,0016	0,0012	0,0003	0,001	10,8394	0,0010
Образец №6	<i>d</i> , мм	21,1848	21,1852	21,1790	21,1864	21,184	21 1929	0.0025
Сталь 40Х13 20-№1	2и(d), мм	0,0016	0,0019	0,0024	0,0004	0,001	21,1030	0,0025

Таблица С.1-Результаты измерений толщины образцов

В целом, можно сделать следующие выводы:

- результаты измерений ГП «Днепрстандартметрология» для 4-х образцов толщиной 20 и 40 мм имеют систематическую погрешность минус 5-8 мкм относительно среднего значения толщины (в таблице С.1 выделено полужирным шрифтом), что может быть связано с применяемой методикой измерений или средством измерений.
- разброс результатов измерений толщины образцов оказался достаточно заметным и может выходить за рамки заявленных неопределенностей двух отдельно взятых лабораторий (например, образец №1 и образец №3);

В графической форме результаты приведены на рис. С.1. Нумерация участников сличений на диаграммах соответствует хронологическому порядку проведения измерений согласно графику сличений:

1 – Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия, ГЭТ 189-2014;

2 – БелГИМ, Беларусь, УИСУ-3 №01;

3-ГП «Днепрстандартметрология», Украина, УИСУ-01 №2;

4 – ГП «Укрметртестстандарт», Украина, УИСУ-01 №3;

5 – НИМ, Китай, National measurement standard for the calibration of fundamental ultrasonic properties of materials, with standard identifier [2011] 237;

Рис. С.1. Результаты измерений толщины образцов d

Приложение D. Результаты измерений времени распространения продольных ультразвуковых волн

По предложению БелГИМ, для получения более полной картины результатов сличений с учетом разброса данных по толщине, проведена оценка результатов измерений по параметру «время распространения продольных ультразвуковых волн».

Так как измерения скорости распространения продольных ультразвуковых волн эхоимпульсным методом проведены только на пяти эталонах, а в результаты измерений введены температурные и дифракционные поправки, то данные участников сличений были трансформированы по следующей методике.

Время распространения продольных ультразвуковых волн $\overline{T_i}$ для *i*-го участника сличений, <u>приведенное к удвоенной толщине образца</u>, определяется по формуле

$$\overline{T_i} = \frac{2\overline{d_i}}{\overline{C_i}},\tag{D.1}$$

где \overline{d}_i – результат измерения толщины образца *i*-го участника; \overline{C}_i – исправленный результат измерений скорости распространения продольных ультразвуковых волн *i*-го участника.

Суммарная стандартная неопределенность измерений $u(T_i)$ оценивается по формуле

$$u(T_i) = (u(C_i)/\overline{C_i})\overline{T_i}, \qquad (D.2)$$

где $u(C_i)$ – суммарная стандартная неопределенность измерений скорости распространения продольных ультразвуковых волн для *i*-го участника.

Значение неопределенности $u(T_i)$ при такой оценке несколько завышено за счет составляющих по толщине образца, но позволяет оценить результаты с точки зрения основного параметра этих сличений (скорость продольных ультразвуковых волн).

Опорное значение T_{ref} (среднее взвешенное) и стандартная неопределенность опорного значения сличений $u(T_{ref})$ рассчитываются по формулам

$$T_{ref} = \frac{\sum_{i=1}^{n} \frac{\overline{T}_{i}}{u^{2}(T_{i})}}{\sum_{i=1}^{n} \frac{1}{u^{2}(T_{i})}},$$
(D.3)

$$u^{2}(T_{ref}) = \frac{1}{\sum_{i=1}^{n} \frac{1}{u^{2}(T_{i})}}.$$
 (D.4)

Отклонение результатов измерений *i*-го участника от опорного значения $d_{i,T}$ и неопределенность этого отклонения $u(d_{i,T})$ вычисляются по формулам

$$d_{i,T} = \overline{T}_i - T_{ref} , \qquad (D.5)$$

$$u(d_{i,T}) = \sqrt{u^2(T_i) - u^2(T_{ref})} .$$
 (D.6)

Критерий E_n показывает совместимость данных ($E_n \leq 1$) и вычисляется по формуле

$$E_{n} = \frac{\left|\overline{T}_{i} - T_{ref}\right|}{2\sqrt{u^{2}(T_{i}) - u^{2}(T_{ref})}} = \frac{\left|d_{i,T}\right|}{2u(d_{i,T})}.$$
(D.6)

Полученные результаты приведены в таблицах D.1- D.6 и на диаграммах. В таблицах D.1- D.6 полужирным шрифтом выделены значения критерия $E_n > 1$. Цветом выделены результаты, исключенные при расчете опорного значения T_{ref} , как имеющие наибольшее отклонение по параметрам d_i и E_n . Опорное значение T_{ref} для образца №4 на частоте 2,5 МГц рассчитано по результатам измерений всех НМИ.

Можно сделать следующие выводы:

1. Для образцов №1 и №5 толщиной 10 мм результаты всех участников сличений по времени распространения продольных волн согласованы, так как разброс $\overline{T_i}$ достаточно мал и не превышает 3 нс на частотах 5 и 10 МГц.

2. Для всех образцов толщиной 10 и 20 мм результаты измерений времени распространения продольных ультразвуковых волн хорошо совпадают для БелГИМ и ГП «Днепрстандартметрология» (разность менее 1 нс).

3. Для образцов №2, №3, №4, №6 расхождения результатов измерений ГП «Укрметртестстандарт» связаны с имеющимися отклонениями при измерениях временных интервалов между переотраженными ультразвуковыми импульсами.

4. Для образцов №2 и №4 толщиной 20 мм на частоте 2,5 МГц отмечена общая зависимость изменения измеренных временных интервалов с частотой для трех иммерсионных установок, реализующих эхо-импульсный метод. Временные интервалы на частоте 2,5 МГц меньше, чем для остальных установок, и выравниваются на частотах 5 и 10 МГц. Этот эффект только частично может быть объяснен частотной дисперсией скорости, которая оценивается значением не более 1.10⁻⁴.

5. Для образца №4 на частоте 2,5 МГц временные интервалы практически одинаковы для трех иммерсионных установок, реализующих эхо-импульсный метод, что приводит к смещению опорного значения на частоте 2,5 МГц и большим отклонениям $d_{i,T}$ для всех участников в сравнении с данными на частотах 5 и 10 МГц.

6. Для образцов №2 и №4 на частоте 2,5 МГц для ВНИИФТРИ (ГЭТ) и БелГИМ, заявивших наименьшую неопределенность, получены отклонения от опорного значения $d_{i,T}$, для которых значения критерия E_n практически равны при противоположном знаке отклонений (таблицы D.2 и D.4). Применение процедуры критерия χ^2 для оценки таких данных требует уточнений.

7. Для образца №3 толщиной 40 мм из кварцевого стекла марки КУ-1 результаты по времени распространения продольных волн на всех частотах практически совпадают для каждого участника, что подтверждает отсутствие частотной дисперсии скорости и делает данный материал перспективным для сличений.

8. Для образца №6 толщиной 20 мм из стали 40Х13 на всех частотах отклонения от опорного значения для шести эталонов не превышают расширенной неопределенности отклонения (критерий $E_n < 1$), что подтверждает совместимость данных. Изменение временных интервалов с частотой обусловлено дисперсией скорости (оценка ~5·10⁻⁴).

9. Трансформированные результаты НИМ (метод прохождения) и ВНИИФТРИ (резонансный метод) при данном подходе к оценкам времени распространения продольных ультразвуковых волн корректны и согласуются с опорными значениями T_{ref} в пределах заявленной неопределенности измерений.

Образец	№	НМИ	<i>f</i> , МГц	Толщина	<i>С</i> _{<i>i</i>} , м/с	T_i , мкс	$u(T_i)$, мкс	T_{ref} , мкс	$u(T_{ref}),$	$d_{i,T}$, HC	$2u(d_{i,T}),$	E_n
				<i>d</i> , мм					мкс		нс	
Образец	1	ВНИИФТРИ (ГЭТ)	0,525	9,9117	5967,22	3,32205	0,00048			0,6	0,8	0,75
Nº1	2	БелГИМ	4,5	9,9073	5967,00	3,32070	0,00046			-0,8	0,8	1,00
Кварц КВ	3	Днепрстандартметрология	5	9,9100	5968,98	3,32050	0,00102			-0,9	2,0	0,48
10-J№05	4	Укрметртестстандарт	5	9,9145	5972,60	3,31999	0,00111	3,32145	0,00027	-1,5	2,2	0,67
	5	НИМ	5	9,911	5964,70	3,32322	0,00220			1,8	4,4	0,41
	6	ВНИИФТРИ (ИЗУ, ЭИ)	5	9,9117	5967,65	3,32181	0,00095			0,4	1,8	0,20
	7	ВНИИФТРИ (ИЗУ, Р)	5,12	9,9117	5966,19	3,32263	0,00072			1,2	1,3	0,88
	1	ВНИИФТРИ (ГЭТ)	0,525	9,9117	5967,22	3,32205	0,00048			0,1	0,8	0,14
	2	БелГИМ	10	9,9073	5965,05	3,32178	0,00067			-0,2	1,2	0,13
	3	Днепрстандартметрология	10	9,9100	5966,00	3,32216	0,00125			0,2	2,4	0,09
	4	Укрметртестстандарт	10	9,9145	5972,51	3,32004	0,00111	3,32194	0,00029	-1,9	2,1	0,89
	5	НИМ	10	9,911	5964,90	3,32311	0,00216			1,2	4,3	0,27
	6	ВНИИФТРИ (ИЗУ, ЭИ)	10	9,9117	5968,06	3,32158	0,00078			-0,4	1,4	0,25
	7	ВНИИФТРИ (ИЗУ, Р)	9,93	9,9117	5965,86	3,32281	0,00072			0,9	1,3	0,65

Таблица D.1 – Время распространения продольных ультразвуковых волн, приведенное к удвоенной толщине образца

Образец	№	НМИ	<i>f</i> , МГц	Толщина	<i>С</i> _{<i>i</i>} , м/с	T_i , мкс	$u(T_i)$, мкс	T_{ref} , мкс	$u(T_{ref}),$	$d_{i,T}$, HC	$2u(d_{i,T}),$	E_n
				<i>d</i> , мм					мкс		нс	
Образец	1	ВНИИФТРИ (ГЭТ)	0,525	19,9557	5961,85	6,69447	0,00046			1,2	0,6	2,10
№2	2	БелГИМ	2,3	19,9550	5965,33	6,69032	0,00083			-3,0	1,5	2,01
Кварц КВ	3	Днепрстандартметрология	2,5	19,9488	5963,21	6,69062	0,00153			-2,7	3,0	0,91
20-J№03	4	Укрметртестстандарт	2,5	19,9567	5969,51	6,68621	0,00124	6,69331	0,00037	-7,1	2,4	2,99
	5	НИМ	2,25	19,957	5959,50	6,69754	0,00301			4,2	6,0	0,71
	6	ВНИИФТРИ (ИЗУ, ЭИ)	2,5	19,9557	5963,79	6,69229	0,00274			-1,0	5,4	0,19
	7	ВНИИФТРИ (ИЗУ, Р)	2,54	19,9557	5963,41	6,69271	0,00134			-0,6	2,6	0,23
	1	ВНИИФТРИ (ГЭТ)	0,525	19,9557	5961,85	6,69447	0,00046			0,8	0,6	1,36
	2	БелГИМ	4,5	19,9550	5964,14	6,69166	0,00083			-2,0	1,5	1,37
	3	Днепрстандартметрология	5	19,9488	5962,61	6,69130	0,00202			-2,4	4,0	0,61
	4	Укрметртестстандарт	5	19,9567	5967,80	6,68813	0,00124	6,69371	0,00036	-5,6	2,4	2,34
	5	НИМ	5	19,957	5960,50	6,69642	0,00355			2,7	7,1	0,38
	6	ВНИИФТРИ (ИЗУ, ЭИ)	5	19,9557	5963,29	6,69285	0,00146			-0,9	2,8	0,30
	7	ВНИИФТРИ (ИЗУ, Р)	4,93	19,9557	5962,31	6,69396	0,00132			0,3	2,5	0,10
	1	ВНИИФТРИ (ГЭТ)	0,525	19,9557	5961,85	6,69447	0,00046			0,3	0,5	0,52
	2	БелГИМ	10	19,9550	5962,29	6,69373	0,00123			-0,5	2,3	0,20
	3	Днепрстандартметрология	10	19,9488	5960,99	6,69312	0,00243			-1,1	4,8	0,23
	4	Укрметртестстандарт	10	19,9567	5966,87	6,68917	0,00124	6,69421	0,00038	-5,0	2,4	2,13
	5	НИМ	10	19,957	5958,70	6,69844	0,00288			4,2	5,7	0,74
	6	ВНИИФТРИ (ИЗУ, ЭИ)	10	19,9557	5964,39	6,69162	0,00137			-2,6	2,6	0,99
	7	ВНИИФТРИ (ИЗУ, Р)	10,01	19,9557	5961,88	6,69443	0,00132			0,2	2,5	0,09

Таблица D.2 – Время распространения продольных ультразвуковых волн, приведенное к удвоенной толщине образца

Образец	№	НМИ	<i>f</i> , МГц	Толщина	<i>С</i> _{<i>i</i>} , м/с	T_i , мкс	$u(T_i)$, мкс	T_{ref} , мкс	$u(T_{ref}),$	$d_{i,T}$, HC	$2u(d_{i,T}),$	E_n
				<i>d</i> , мм					мкс		нс	
Образец	1	ВНИИФТРИ (ГЭТ)	0,525	40,0523	5934,59	13,49791	0,00068			0,6	0,7	0,82
N <u>∘</u> 3	2	БелГИМ	2,3	40,0516	5935,03	13,49667	0,00159			-0,7	3,0	0,23
Кварц	3	Днепрстандартметрология	2,5	40,0451	5936,14	13,49196	0,00291			-5,4	5,7	0,95
КУ-1 40 №1	4	Укрметртестстандарт	2,5	40,0564	5937,94	13,49168	0,00157	13,49735	0,00059	-5,7	2,9	1,95
40,1≌1	5	НИМ	2,25	40,055	5936,40	13,49471	0,00648			-2,6	12,9	0,20
	6	ВНИИФТРИ (ИЗУ, ЭИ)	2,5	40,0523	5934,97	13,49705	0,00534			-0,3	10,6	0,03
	7	ВНИИФТРИ (ИЗУ, Р)	2,52	40,0523	5935,50	13,49585	0,00266			-1,5	5,2	0,29
	1	ВНИИФТРИ (ГЭТ)	0,525	40,0523	5934,59	13,49791	0,00068			0,5	0,7	0,67
2 3 4 5 6	2	БелГИМ	4,5	40,0516	5935,40	13,49583	0,00159			-1,6	3,0	0,54
	3	Днепрстандартметрология	5	40,0451	5935,29	13,49390	0,00400			-3,5	7,9	0,45
	4	Укрметртестстандарт	5	40,0564	5937,85	13,49189	0,00159	13,49744	0,00059	-5,6	3,0	1,88
	5	НИМ	5	40,055	5936,80	13,49380	0,00607	7		-3,6	12,1	0,30
	6	ВНИИФТРИ (ИЗУ, ЭИ)	5	40,0523	5934,91	13,49719	0,00275			-0,3	5,4	0,05
	7	ВНИИФТРИ (ИЗУ, Р)	5,04	40,0523	5934,86	13,49732	0,00266			-0,1	5,2	0,02
	1	ВНИИФТРИ (ГЭТ)	0,525	40,0523	5934,59	13,49791	0,00068			0,4	0,6	0,59
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\end{array}$	2	БелГИМ	10	40,0516	5934,88	13,49703	0,00227	08 27 77 59 13,49755 07 68		-0,5	4,4	0,12
	3	Днепрстандартметрология	10	40,0451	5935,42	13,49360	0,00477			-4,0	9,5	0,42
	4	Укрметртестстандарт	10	40,0564	5937,77	13,49207	0,00159		0,00061	-5,5	2,9	1,86
	5	НИМ	10	40,055	5936,70	13,49403	0,00607			-3,5	12,1	0,29
	6	ВНИИФТРИ (ИЗУ, ЭИ)	10	40,0523	5935,67	13,49545	0,00268			-2,1	5,2	0,40
	7	ВНИИФТРИ (ИЗУ, Р)	10,00	40,0523	5935,10	13,49677	0,00266			-0,8	5,2	0,15

Таблица D.3 – Время распространения продольных ультразвуковых волн, приведенное к удвоенной толщине образца

Образец	№	НМИ	<i>f</i> , МГц	Толщина	<i>С</i> _{<i>i</i>} , м/с	T_i , мкс	$u(T_i)$, мкс	T_{ref} , мкс	$u(T_{ref}),$	$d_{i,T}$, HC	$2u(d_{i,T}),$	E_n
				<i>d</i> , мм					мкс		нс	
Образец	1	ВНИИФТРИ (ГЭТ)	0,525	20,0266	5710,73	7,01367	0,00049			1,5	0,6	2,29
N <u>∘</u> 4	2	БелГИМ	2,3	20,0254	5714,26	7,00892	0,00086			-3,3	1,5	2,12
Стекло	3	Днепрстандартметрология	2,5	20,0165	5710,97	7,00984	0,00160			-2,4	3,1	0,76
DK8 20 Mo1	4	Укрметртестстандарт	2,5	20,0261	5715,13	7,00810	0,00125	7,01220	0,00037	-4,1	2,4	1,72
2031≌1	5	НИМ	2,25	20,030	5710,90	7,01466	0,00351			2,5	7,0	0,35
	6	ВНИИФТРИ (ИЗУ, ЭИ)	2,5	20,0266	5709,51	7,01518	0,00295			3,0	5,9	0,51
	7	ВНИИФТРИ (ИЗУ, Р)	2,42	20,0266	5709,54	7,01517	0,00146			3,0	2,8	1,05
	1	ВНИИФТРИ (ГЭТ)	0,525	20,0266	5710,73	7,01367	0,00049			0,1	0,6	0,22
	2	БелГИМ	4,5	20,0254	5711,06	7,01285	0,00086			-0,7	1,5	0,45
	3	Днепрстандартметрология	5	20,0165	5708,51	7,01286	0,00211			-0,7	4,2	0,16
	4	Укрметртестстандарт	5	20,0261	5713,74	7,00980	0,00125	7,01354	0,00039	-3,7	2,4	1,57
	5	НИМ	5	20,030	5712,30	7,01294	0,00476			-0,6	9,5	0,06
	6	ВНИИФТРИ (ИЗУ, ЭИ)	5	20,0266	5710,87	7,01350	0,00160			0,0	3,1	0,01
	7	ВНИИФТРИ (ИЗУ, Р)	4,99	20,0266	5709,89	7,01473	0,00146			1,2	2,8	0,42
	1	ВНИИФТРИ (ГЭТ)	0,525	20,0266	5710,73	7,01367	0,00049			-0,1	0,5	0,12
	2	БелГИМ	10	20,0254	5710,32	7,01376	0,00122			0,0	2,3	0,01
	3	Днепрстандартметрология	10	20,0165	5707,54	7,01406	0,00253			0,3	5,0	0,06
	4	Укрметртестстандарт	10	20,0261	5714,88	7,00840	0,00126	7,01374	0,00041	-5,3	2,4	2,23
	5	НИМ	10	20,030	5711,20	7,01429	0,00351			0,6	7,0	0,08
	6	ВНИИФТРИ (ИЗУ, ЭИ)	10	20,0266	5711,17	7,01314	0,00150			-0,6	2,9	0,21
	7	ВНИИФТРИ (ИЗУ, Р)	9,98	20,0266	5709,93	7,01466	0,00146			0,9	2,8	0,33

Таблица D.4 – Время распространения продольных ультразвуковых волн, приведенное к удвоенной толщине образца

Образец	№	НМИ	<i>f</i> , МГц	Толщина	<i>С</i> _{<i>i</i>} , м/с	T_i , мкс	$u(T_i)$, мкс	T_{ref} , мкс	$u(T_{ref}),$	$d_{i,T}$, HC	$2u(d_{i,T}),$	E_n
				<i>d</i> , мм					мкс		нс	
Образец	1	ВНИИФТРИ (ГЭТ)	0,525	10,8384	6004,32	3,61020	0,00046			0,2	0,7	0,30
№5 Сталь	2	БелГИМ	4,5	10,8373	6005,34	3,60922	0,00050			-0,8	0,8	0,91
40X13	3	Днепрстандартметрология	5	10,8415	6007,30	3,60944	0,00111			-0,5	2,1	0,25
10,102	4	Укрметртестстандарт	5	10,8408	6007,35	3,60918	0,00112	3,60998	0,00027	-0,8	2,2	0,37
	5	НИМ	5	10,839	6006,30	3,60921	0,00231			-0,8	4,6	0,17
	6	ВНИИФТРИ (ИЗУ, ЭИ)	5	10,8384	6001,61	3,61183	0,00099			1,9	1,9	0,98
7	7	7 ВНИИФТРИ (ИЗУ, Р) 1 РИЧИ ТРИ (ГОТ)	4,98	10,8384	6003,42	3,61074	0,00075			0,8	1,4	0,54
	1	ВНИИФТРИ (ГЭТ)	0,525	10,8384	6004,32	3,61020	0,00046			-0,6	0,7	0,81
	2	БелГИМ	10	10,8373	6003,58	3,61028	0,00072			-0,5	1,3	0,38
	3	Днепрстандартметрология	10	10,8415	6002,75	3,61218	0,00135			1,4	2,6	0,53
	4	Укрметртестстандарт	10	10,8408	6002,63	3,61202	0,00111	3,61078	0,00030	1,2	2,1	0,58
	5	НИМ	10	10,839	6006,50	3,60909	0,00209			-1,7	4,1	0,41
	6	ВНИИФТРИ (ИЗУ, ЭИ)	10	10,8384	6002,96	3,61102	0,00084			0,2	1,6	0,15
	7	ВНИИФТРИ (ИЗУ, Р)	9,96	10,8384	6001,57	3,61185	0,00075			1,1	1,4	0,79

Таблица D.5 – Время распространения продольных ультразвуковых волн, приведенное к удвоенной толщине образца

Образец	N⁰	НМИ	<i>f</i> , МГц	Толщина	<i>С</i> _{<i>i</i>} , м/с	T_i , мкс	$u(T_i)$, мкс	T_{ref} , мкс	$u(T_{ref}),$	$d_{i,T}$, HC	$2u(d_{i,T}),$	E_n
				<i>d</i> , мм					мкс		нс	
Образец	1	ВНИИФТРИ (ГЭТ)	0,525	21,1848	6002,02	7,05922	0,00252			5,9	4,9	1,21
<u>№</u> 6	2	БелГИМ	2,3	21,1852	6007,46	7,05297	0,00088			-0,3	1,3	0,24
Сталь 40У12	3	Днепрстандартметрология	2,5	21,1790	6004,12	7,05482	0,00162			1,5	3,0	0,51
40A15 20Mo1	4	Укрметртестстандарт	2,5	21,1864	6009,04	7,05145	0,00126	7,05329	0,00057	-1,8	2,2	0,82
205121	5	НИМ	2,25	21,184	6003,40	7,05733	0,00310			4,0	6,1	0,66
	6	ВНИИФТРИ (ИЗУ, ЭИ)	2,5	21,1848	6006,73	7,05368	0,00296			0,4	5,8	0,07
	7	ВНИИФТРИ (ИЗУ, Р)	2,55	21,1848	6006,17	7,05433	0,00141			1,0	2,6	0,41
	1	ВНИИФТРИ (ГЭТ)	0,525	21,1848	6002,02	7,05922	0,00252	7,05594 (3,3	4,9	0,67
	2	БелГИМ	4,5	21,1852	6005,73	7,05499	0,00088		0,00062	-0,9	1,3	0,76
	3	Днепрстандартметрология	5	21,1790	6003,63	7,05540	0,00214			-0,5	4,1	0,13
	4	Укрметртестстандарт	5	21,1864	6009,23	7,05122	0,00126			-4,7	2,2	2,16
	5	НИМ	5	21,184	6002,50	7,05839	0,00367			2,5	7,2	0,34
	6	ВНИИФТРИ (ИЗУ, ЭИ)	5	21,1848	6004,73	7,05604	0,00165			0,1	3,0	0,03
	7	ВНИИФТРИ (ИЗУ, Р)	4,96	21,1848	6003,79	7,05714	0,00141			1,2	2,5	0,47
	1	ВНИИФТРИ (ГЭТ)	0,525	21,1848	6002,02	7,05922	0,00252			2,1	4,8	0,44
	2	БелГИМ	10	21,1852	6005,16	7,05567	0,00129			-1,4	2,2	0,67
	3	Днепрстандартметрология	10	21,1790	6002,52	7,05670	0,00254			-0,4	4,9	0,08
	4	Укрметртестстандарт	10	21,1864	6007,72	7,05300	0,00126	7,05711	0,00071	-4,1	2,1	1,99
	5	НИМ	10	21,184	6004,20	7,05639	0,00374			-0,7	7,3	0,10
	6	ВНИИФТРИ (ИЗУ, ЭИ)	10	21,1848	6004,16	7,05670	0,00143			-0,4	2,5	0,16
	7	ВНИИФТРИ (ИЗУ, Р)	10,06	21,1848	6002,45	7,05878	0,00141			1,7	2,4	0,69

Таблица D.6 – Время распространения продольных ультразвуковых волн, приведенное к удвоенной толщине образца

Рис. D.1. Время распространения продольных ультразвуковых волн, приведенное к удвоенной толщине образца. Образец №1.

Рис. D.2. Время распространения продольных ультразвуковых волн, приведенное к удвоенной толщине образца. Образец №2.

Рис. D.3. Время распространения продольных ультразвуковых волн, приведенное к удвоенной толщине образца. Образец №3.

Рис. D.4. Время распространения продольных ультразвуковых волн, приведенное к удвоенной толщине образца. Образец №4.

Рис. D.5. Время распространения продольных ультразвуковых волн, приведенное к удвоенной толщине образца. Образец №5.

Рис. D.6. Время распространения продольных ультразвуковых волн, приведенное к удвоенной толщине образца. Образец №6.

Приложение Е. Попарная эквивалентность эталонов

Для оценки согласованности результатов измерений каждой пары эталонов НМИучастников сличений рассчитаны попарные степени эквивалентности в соответствии с [4, 5].

Степень эквивалентности для каждой пары эталонов d_{ii} вычисляется по формуле

$$d_{ij}=C_i-C_j,$$

с соответствующей неопределенностью

$$u(d_{ij}) = \sqrt{u^2(C_i) + u^2(C_j)},$$

где C_i , C_j , $u(C_i)$, $u(C_j)$ – результаты измерений скорости продольных ультразвуковых волн и суммарная неопределенность измерений, представленные *i*-м и *j*-м участниками сличений, соответственно.

Попарная эквивалентность эталонов означает выполнение условия

$$\left|d_{ij}\right| \leq 2u(d_{ij}),$$

или в виде критерия E_n :

$$E_n = \frac{\left| d_{ij} \right|}{2u(d_{ii})} \le 1.$$

В таблицах Е.1-Е.6 приведены значения критерия E_n для попарных разностей результатов измерений НМИ-участников сличений. Полужирным шрифтом выделены значения, которые превышают 1.

Обозначение номеров участников сличений в таблицах соответствует хронологическому порядку проведения измерений согласно графику сличений:

1 – Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия, ГЭТ 189-2014;

2-БелГИМ, Беларусь, УИСУ-3 №01;

3 – ГП «Днепрстандартметрология», Украина, УИСУ-01 №2;

4 – ГП «Укрметртестстандарт», Украина, УИСУ-01 №3;

5 – НИМ, Китай, National measurement standard for the calibration of fundamental ultrasonic properties of materials, with standard identifier [2011] 237;

6 – Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия, ИЗУ-1 №1, эхо-импульсный метод;

7 – Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия, ИЗУ-1 №1, резонансный метод.

Частота, МГц	НМИ	1	2	3	4	5	6	7
	1		0,09	0,43	1,23	0,31	0,11	0,33
	2	0,09		0,49	1,29	0,29	0,17	0,26
	3	0,43	0,49		0,67	0,49	0,27	0,62
5	4	1,23	1,29	0,67	_	0,89	0,94	1,34
	5	0,31	0,29	0,49	0,89	_	0,34	0,18
	6	0,11	0,17	0,27	0,94	0,34	_	0,34
	7	0,33	0,26	0,62	1,34	0,18	0,34	_
	1	_	0,73	0,25	1,22	0,29	0,25	0,43
	2	0,73	_	0,19	1,61	0,02	0,81	0,23
	3	0,25	0,19		1,08	0,12	0,39	0,03
10	4	1,22	1,61	1,08	_	0,87	0,91	1,40
	5	0,29	0,02	0,12	0,87	_	0,38	0,12
	6	0,25	0,81	0,39	0,91	0,38	_	0,57
	7	0,43	0,23	0,03	1,40	0,12	0,57	_

Таблица Е.1 – Образец №1. Кварц КВ 10№05

Таблица	E 2 –	Образец	No2	Квари	КB	201005
гаолица	L.2 -	Образец	J¶≌∠.	пъарц	КD	201205

Частота, МГц	НМИ	1	2	3	4	5	6	7
	1	_	2,06	0,48	3,23	0,43	0,39	0,62
	2	2,06	_	0,68	1,56	1,05	0,30	0,69
	3	0,48	0,68	_	1,79	0,62	0,10	0,05
2,5	4	3,23	1,56	1,79	_	1,72	1,07	1,87
	5	0,43	1,05	0,62	1,72		0,59	0,67
	6	0,39	0,30	0,10	1,07	0,59	—	0,07
	7	0,62	0,69	0,05	1,87	0,67	0,07	_
	1	_	1,36	0,21	2,50	0,21	0,53	0,19
	2	1,36	_	0,39	1,36	0,56	0,29	0,66
	3	0,21	0,39	_	1,22	0,29	0,15	0,07
5	4	2,50	1,36	1,22	—	1,09	1,31	1,69
	5	0,21	0,56	0,29	1,09		0,41	0,27
	6	0,53	0,29	0,15	1,31	0,41	_	0,28
	7	0,19	0,66	0,07	1,69	0,27	0,28	_
	1	_	0,19	0,20	2,14	0,61	0,99	0,01
	2	0,19	_	0,27	1,47	0,65	0,64	0,13
	3	0,20	0,27	_	1,21	0,34	0,69	0,18
10	4	2,14	1,47	1,21	_	1,47	0,76	1,55
	5	0,61	0,65	0,34	1,47	_	1,00	0,56
	6	0,99	0,64	0,69	0,76	1,00	_	0,74
	7	0,01	0,13	0,18	1,55	0,56	0,74	_

Частота, МГц	НМИ	1	2	3	4	5	6	7
	1	_	0,29	0,59	2,23	0,32	0,08	0,38
	2	0,29	_	0,38	1,48	0,23	0,01	0,17
	3	0,59	0,38	_	0,62	0,04	0,22	0,19
2,5	4	2,23	1,48	0,62	_	0,26	0,61	0,90
	5	0,32	0,23	0,04	0,26		0,19	0,15
	6	0,08	0,01	0,22	0,61	0,19	_	0,10
	7	0,38	0,17	0,19	0,90	0,15	0,10	_
	1	_	0,53	0,20	1,83	0,41	0,13	0,11
	2	0,53	_	0,03	1,12	0,25	0,18	0,20
	3	0,20	0,03	_	0,66	0,24	0,09	0,10
5	4	1,83	1,12	0,66	_	0,19	1,00	1,04
	5	0,41	0,25	0,24	0,19	_	0,32	0,33
	6	0,13	0,18	0,09	1,00	0,32	_	0,01
	7	0,11	0,20	0,10	1,04	0,33	0,01	
	1	_	0,14	0,20	2,01	0,39	0,44	0,21
	2	0,14	_	0,12	1,17	0,32	0,26	0,07
	3	0,20	0,12	_	0,53	0,19	0,05	0,07
10	4	2,01	1,17	0,53	_	0,19	0,75	0,97
	5	0,39	0,32	0,19	0,19	_	0,18	0,27
	6	0,44	0,26	0,05	0,75	0,18	_	0,17
	7	0,21	0,07	0,07	0,97	0,27	0,17	_

Таблица Е.3 – Образец №3. Кварц КУ-1 40№1

Частота, МГц	НМИ	1	2	3	4	5	6	7
	1	_	2,17	0,09	2,00	0,03	0,25	0,47
	2	2,17	_	1,11	0,35	0,57	0,95	1,71
	3	0,09	1,11	_	1,26	0,01	0,27	0,41
2,5	4	2,00	0,35	1,26	_	0,70	1,08	1,78
	5	0,03	0,57	0,01	0,70		0,19	0,22
	6	0,25	0,95	0,27	1,08	0,19	_	0,01
	7	0,47	1,71	0,41	1,78	0,22	0,01	_
	1	_	0,20	0,63	1,37	0,20	0,05	0,34
	2	0,20	_	0,69	1,09	0,16	0,06	0,42
	3	0,63	0,69	_	1,31	0,45	0,55	0,33
5	4	1,37	1,09	1,31	—	0,18	0,87	1,23
	5	0,20	0,16	0,45	0,18		0,17	0,30
	6	0,05	0,06	0,55	0,87	0,17	_	0,28
	7	0,34	0,42	0,33	1,23	0,30	0,28	_
	1	_	0,19	0,76	1,89	0,08	0,17	0,32
	2	0,19	_	0,61	1,61	0,15	0,27	0,13
	3	0,76	0,61	_	1,60	0,52	0,76	0,50
10	4	1,89	1,61	1,60		0,61	1,17	1,58
	5	0,08	0,15	0,52	0,61	_	0,01	0,20
	6	0,17	0,27	0,76	1,17	0,01	_	0,36
	7	0,32	0,13	0,50	1,58	0,20	0,36	_

Таблица Е.4 – Образец №4. Стекло БК8 20№1

Частота, МГц	НМИ	1	2	3	4	5	6	7
	1	_	0,45	0,75	0,75	0,25	0,75	0,31
	2	0,45	_	0,49	0,49	0,12	1,02	0,64
	3	0,75	0,49	_	0,01	0,12	1,16	0,87
5	4	0,75	0,49	0,01	_	0,12	1,15	0,87
	5	0,25	0,12	0,12	0,12	_	0,56	0,36
	6	0,75	1,02	1,16	1,15	0,56	—	0,44
	7	0,31	0,64	0,87	0,87	0,36	0,44	_
	1	_	0,26	0,33	0,42	0,31	0,43	0,94
	2	0,26	_	0,16	0,22	0,40	0,17	0,58
	3	0,33	0,16	_	0,02	0,45	0,04	0,23
10	4	0,42	0,22	0,02	_	0,49	0,07	0,24
	5	0,31	0,40	0,45	0,49	_	0,47	0,67
	6	0,43	0,17	0,04	0,07	0,47	_	0,37
	7	0,94	0,58	0,23	0,24	0,67	0,37	_

Таблица Е.5 – Образец №5. Сталь 40Х13 10№2

Частота, МГц	НМИ	1	2	3	4	5	6	7
	1	_	1,42	0,47	1,70	0,22	0,77	0,97
	2	1,42	_	1,06	0,60	0,74	0,14	0,45
	3	0,47	1,06	_	1,41	0,12	0,45	0,56
2,5	4	1,70	0,60	1,41	_	0,99	0,42	0,89
	5	0,22	0,74	0,12	0,99		0,46	0,48
	6	0,77	0,14	0,45	0,42	0,46	—	0,10
	7	0,97	0,45	0,56	0,89	0,48	0,10	—
	1	_	0,97	0,32	1,74	0,07	0,60	0,42
	2	0,97	_	0,53	1,32	0,50	0,32	0,69
	3	0,32	0,53	_	1,32	0,16	0,24	0,04
5	4	1,74	1,32	1,32	_	1,02	1,27	1,68
	5	0,07	0,50	0,16	1,02		0,33	0,19
	6	0,60	0,32	0,24	1,27	0,33	_	0,25
	7	0,42	0,69	0,04	1,68	0,19	0,25	_
	1	_	0,76	0,09	1,38	0,30	0,50	0,09
	2	0,76		0,54	0,83	0,14	0,30	0,85
	3	0,09	0,54	_	1,08	0,22	0,33	0,02
10	4	1,38	0,83	1,08	_	0,52	1,09	1,65
	5	0,30	0,14	0,22	0,52	_	0,01	0,26
	6	0,50	0,30	0,33	1,09	0,01		0,52
	7	0,09	0,85	0,02	1,65	0,26	0,52	_

Приложение F ТЕХНИЧЕСКИЙ ПРОТОКОЛ ПИЛОТНЫХ СЛИЧЕНИЙ

1 Исходные положения

В 2008 году в рамках темы COOMET 448/RU/08 впервые были проведены пилотные двусторонние сличения эталонных установок для измерений скорости распространения продольных ультразвуковых волн в твердых средах. Участники сличений – Дальневосточный филиал ФГУП «ВНИИФТРИ» (Россия), БелГИМ (Беларусь). Измерения проведены эхо-импульсным методом на частоте 10 МГц. Сличения выявили расхождение результатов измерений скорости распространения продольных волн бесконтактным импульсным оптико-акустическим методом (Россия) и импульсным иммерсионным методом (Беларусь), зависящее от материала мер и их толщины.

В 2010 году в рамках темы СООМЕТ 482/ВҮ/09 были проведены пилотные сличения установок, реализующих только импульсный иммерсионный метод измерений. Участники сличений – БелГИМ (Беларусь), ГП «Укрметртестстандарт» «Днепрстандартметрология» (Украина). Измерения (Украина), ΓП скорости распространения продольных ультразвуковых волн проведены на частотах 5 и 10 МГц в образцах из различных конструкционных материалов. Участники сличений неопределенности измерений подтвердили заявленные скорости продольных ультразвуковых волн импульсным методом на частоте 5 МГц. На частоте 10 МГц для ряда образцов получено расхождение в результатах измерений.

С целью уточнения и подтверждения измерительных возможностей НМИ в области измерений скорости распространения продольных ультразвуковых волн в твердых средах на 10-м заседании Технического комитета ТК 1.2 СООМЕТ, состоявшемся в ФГУП «ВНИИФТРИ» в сентябре 2015 г., Менделеево, Россия, с предложением об организации новых сличений выступил национальный метрологический институт России – ФГУП «ВНИИФТРИ» (Дальневосточный филиал). Пилотное сличение было запланировано как двухстороннее: участники сличения ФГУП «ВНИИФТРИ» и БелГИМ. В дальнейшем, об участии в сличении заявили еще 2 лаборатории от ГП «Укрметртестстандарт» и ГП «Днепрстандартметрология». На 12-м заседании ТК 1.2 КООМЕТ (Вильнюс, Литва, сентябрь 2017 г.) пожелание присоединиться к сличениям выразил национальный метрологический институт Китая (NIM).

В новых пилотных сличениях по теме COOMET 706/RU/16 предлагается проведение сличений результатов измерений скорости распространения продольных ультразвуковых волн в твердых средах с использованием шести эталонов, в которых реализованы:

а) бесконтактный импульсный оптико-акустический метод измерений;

б) бесконтактный импульсный и резонансный емкостный метод измерений;

в) импульсный иммерсионный метод измерений (4 эталона).

Частотный диапазон сличений заявлен (1 – 10) МГц. Основные частоты в рамках диапазона 2,25-2,5; 5,0; 10,0 МГц. В качестве транспортируемых эталонов сравнения выбраны образцы (меры скорости), изготовленные из различных материалов толщиной от 10 до 40 мм (кварцевое и оптическое стекло, сталь 40Х13). Эталоны сравнения предоставляет Дальневосточный филиал ФГУП «ВНИИФТРИ».
Учитывая стабильность характеристик эталонов сравнения, выбрана круговая схема сличений.

Было принято, что пилотной лабораторией сличений выступит Дальневосточный филиал ФГУП «ВНИИФТРИ».

2 Участники сличений

НМИ-участники пилотных сличений представлены в таблице 1.

Таблица 1 – Участники пилотных сличений

Наименование	Адрес	Аббревиатура	Контакт-	Телефон, факс,
НМИ		НМИ	ное лицо	электронная почта
ФГУП «Всероссийский научно- исследовательский институт физико- технических и радиотехнических измерений», Дальневосточный филиал	ул. Карла Маркса, 65 г. Хабаровск, 680000, Российская Федерация	ДВФ «ВНИИФТРИ»	Владимир Луговой Петр Базылев	Тел.: +7 (4212) 30-17-62, +7 (4212) 32-92-68 Факс: +7 (4212) 30-15-66 E-mail: <u>lugovoy@dst.khv.ru</u> bazylev@dfvniiftri.ru
РУП «Белорусский государственный институт метрологии»	Старовиленский тракт, 93, Минск, ВY-220053, Республика Беларусь	БелГИМ	Александр Добров	Тел.: +(375-17) 335-50-58 +(375-17) 233-55-01 Факс: +(375-17) 288-09-38 E-mail: <u>dobrov@belgim.by</u>
ГП «Всеукраинский государственный центр стандартизации, метрологии, сертификации и защиты прав потребителей»	ул. Метрологическая, 4, Киев, UA-03680, Украина	«Укрметртест- стандарт»	Андрей Иващенко	Тел.: +(38-044) 526-43-67 Факс: +(38-044) 526-32-79 E-mail: <u>dep22@ukr.net</u>
ГП «Днепропетровский региональный государственный научно-технический центр стандартизации, метрологии и сертификации»	ул. Баррикадная, 23, г. Днепропетровск, UA-49044, Украина	«Днепрстандарт- метрология»	Павел Сазонов	Тел.: +(38-056) 744-60-95 Факс: +(38-056) 377-24-33 E-mail: <u>sazonovpavel@gmail.</u> <u>com</u>
Национальный институт метрологии	Китай	NIM, Division of Mechanics and Acoustics of NIM, China	Dr. Longbiao He Dr. Guangzhen Xing	E-mail: helb@nim.ac.cn; xinggz@nim.ac.cn

3 Эталоны

3.1 Дальневосточный филиал ФГУП «ВНИИФТРИ», Россия

1) Государственный первичный эталон единиц скоростей распространения и коэффициента затухания ультразвуковых волн в твердых средах ГЭТ 189-2014:

- бесконтактные оптические (лазерные) методы возбуждения и регистрации ультразвука;

- импульсный метод измерений скорости распространения продольных ультразвуковых волн.

2) Установка для комплексных измерений акустических параметров твердых сред ИЗУ-1 №01:

- бесконтактные емкостные методы возбуждения и регистрации ультразвука;

- импульсный и резонансный методы измерений скорости распространения продольных ультразвуковых волн.

3.2 БелГИМ, Беларусь

Установка для измерения скорости продольных ультразвуковых волн УИСУ-3 № 01:

- иммерсионный пьезоэлектрический метод возбуждения и регистрации ультразвука;

- импульсный метод измерений скорости распространения продольных ультразвуковых волн.

3.3 ГП «Укрметртестстандарт», Украина

Установка для измерения скорости продольных ультразвуковых волн УИСУ-01 № 3: - иммерсионный пьезоэлектрический метод возбуждения и регистрации ультразвука; - импульсный метод измерений скорости распространения продольных ультразвуковых волн.

3.4 ГП «Днепрстандартметрология», Украина

Установка для измерения скорости продольных ультразвуковых волн УИСУ-01 № 2: - иммерсионный пьезоэлектрический метод возбуждения и регистрации ультразвука; - импульсный метод измерений скорости распространения продольных ультразвуковых волн.

3.5 НИМ, Китай

Национальный эталон для измерения ультразвуковых свойств материалов [2011] 237: - иммерсионный пьезоэлектрический метод возбуждения и регистрации ультразвука; - импульсный метод измерений скорости распространения продольных ультразвуковых волн.

4 Транспортируемый эталон сравнения

Для сличения в качестве транспортируемых эталонов сравнения выбраны шесть образцов (меры скорости), изготовленных из кварцевого и оптического стекла и стали 40Х13 толщиной от 10 до 40 мм. Образцы из стекол обеспечивают высокую степень однородности материала по сечению образца, отсутствие зернистости, минимальное значение коэффициента затухания и дисперсии скорости. Образцы из стали подвергнуты термомеханической обработке для обеспечения достаточной степени

однородности и мелкозернистости структуры. Образцы принадлежат Дальневосточному филиалу ФГУП «ВНИИФТРИ».

Основные сведения об образцах приведены в таблице 2. Учитывая стабильность характеристик образцов, выбрана круговая схема сличений.

К образцам, используемым в сличениях, предъявляются следующие специальные требования:

- диапазон толщины образцов (1÷5)·10⁻² м;
- геометрические размеры образцов *D*/*d* ≥ 3, где *D* − диаметр (поперечные размеры) образца, *d* − толщина образца;
- отклонение от параллельности рабочих поверхностей образцов в осесимметричной зоне диаметром 50 мм не более 0,005 мм;
- отклонение от плоскостности рабочих поверхностей образцов в осесимметричной зоне диаметром 50 мм не более 0,0005 мм;
- шероховатость рабочих поверхностей образцов R_a не более 0,16 мкм;
- коэффициент затухания продольных УЗ волн в диапазоне частот до 25 МГц не более 100 дБ/м;
- дисперсия скорости продольных УЗ волн в образцах из стекол в диапазоне частот до 25 МГц не более 0,02 %;
- образцы из стекол должны иметь зеркальное алюминиевое покрытие (толщина ~ 5 мкм).

Обозначение	Материал образца	Геометрические размеры		Примечание
	помер образца	Номинальная толщина, мм	Поперечные размеры, мм	
Образец № 1	Кварцевое стекло КВ 10№05	9,91	100×100	Двустороннее зеркальное покрытие
Образец № 2	Кварцевое стекло КВ 20№05	19,95	100×100	Двустороннее зеркальное покрытие
Образец № 3	Кварцевое стекло КУ- 1 40№1	40,05	Ø 140	Двустороннее зеркальное покрытие
Образец № 4	Стекло БК8 20№1	20,05	Ø 100	Двустороннее зеркальное покрытие
Образец № 5	Сталь 40Х13 10№2	10,84	Ø 50	Одна поверхность имеет зеркальную полировку
Образец № 6	Сталь 40Х13 20№1	21,185	Ø 90	Одна поверхность имеет зеркальную полировку

Таблица 2 – Характеристики эталонов сравнения

Каждый участник сличения, ответственный за транспортировку образцов, должен пользоваться надежным способом доставки образцов в упаковке, которую обеспечивает Дальневосточный филиал ФГУП «ВНИИФТРИ». При этом должны учитываться

местные таможенные правила перевозки. Если лаборатории-участнику необходима соответствующая документация от пилотной лаборатории, то необходимо заранее уведомить об этом Дальневосточный филиал ФГУП «ВНИИФТРИ».

Участники сличения несут ответственность за транспортировку эталона сравнения следующему участнику в соответствии с принятой схемой сличения в сроки, указанные в графике сличений. При срыве этих сроков НМИ-пилот, отвечающий за организацию обращения эталона сравнения, должен пересмотреть график сличений и проинформировать об этом участников сличения.

До окончания сличений образцы не должны использоваться ни в каких других целях, кроме связанных с проведением сличений. Лаборатория-участник берет на себя ответственность за образцы с момента их получения и до передачи следующему участнику или возвращения владельцу.

Рекомендации по обращению с образцами.

Образцы из стекол имеют зеркальное алюминиевое напыление, требующее особо бережного обращения, в том числе при проведении измерений толщины образца. Подготовка образцов к измерениям заключается в извлечении из упаковки, протирке поверхностей мягкой салфеткой, смоченной этиловым, изопропиловым спиртом или другим составом, используемым для очистки оптических поверхностей. После проведения измерений на иммерсионной установке образец необходимо извлечь из иммерсионной ванны и осушить поверхности мягкой салфеткой. Время нахождения образца в жидкости не должно превышать 6 часов.

5 Методика выполнения измерений

Каждая лаборатория должна определить методом косвенных измерений значение скорости распространения продольных ультразвуковых волн в каждом из образцов. Измерения должны быть проведены на частотах 2,25-2,5; 5,0; 10,0 МГц для образцов толщиной 20 и 40 мм и на частотах 5,0; 10,0 МГц для образцов толщиной 10 мм.

Для измерений толщины образцов следует использовать средства линейных измерений, для которых предел допускаемой абсолютной погрешности или расширенная неопределенность измерений в диапазоне измерений от 10 до 50 мм не должны превышать 2 мкм. Измерения толщины образцов производят в 10 точках поверхности образца, равномерно расположенных на границе осесимметричной зоны диаметром 30 мм.

Измерения времени (скорости) распространения продольных ультразвуковых волн для импульсного метода измерений должны производиться в соответствии с технической документацией на используемые при измерениях эталоны. Количество измерений (объем выборки) должно быть не менее 10. Номера используемых при измерениях импульсов, отсчетных полуволн, отсчетных точек в полуволнах выбираются участниками сличений самостоятельно с учетом требований методики измерений. На установке ИЗУ при резонансном методе измерений определяют частоту максимума акустической спектральной линии, наиболее близкой к частотам 2,5; 5,0; 10,0 МГц. При проведении измерений на иммерсионных установках рекомендуется образцы №5 и №6 располагать зеркальной поверхностью к излучающему преобразователю.

Измерения должны проводиться при температуре окружающего воздуха (20 \pm 2) °C. Температура жидкости в иммерсионной ванне должна быть (20 \pm 2) °C. Значение температуры воздуха, иммерсионной жидкости или непосредственно образца должно быть измерено с погрешностью (неопределенностью) не более 0,5 °C.

Перед проведением измерений образец выдерживают при температуре окружающей среды не менее 30 минут (образец толщиной 40 мм – не менее 1 часа). При проведении измерений необходимо периодически контролировать температуру образца (иммерсионной жидкости).

Результаты измерений скорости распространения продольных ультразвуковых волн должны быть приведены к температуре 20 °C с учетом температурного коэффициента скорости (ТКС) для материала меры k_t путем введения поправки по формуле:

$$\tilde{C}_{20^{\circ}C} = \tilde{C}_{t} + (20, 0 - t^{\circ}C)k_{t},$$

где *t* – температура образца (жидкости) при проведении измерений; *k*_{*i*} – температурный коэффициент скорости.

ТКС каждого из образцов и неопределенность ТКС предоставляет пилотлаборатория.

Если дифракционная поправка не рассчитывается, то оцененное максимальное значение этой поправки для данных условий измерений интерпретируется вкладом в суммарную неопределенность с соответствующими границами.

Напряжение и частота переменного тока питающей сети, вибрация, внешние электромагнитные и магнитные поля должны находиться в пределах, установленных в технической документации на используемые при измерениях эталоны.

6 Представление результатов

Каждая лаборатория-участник должна представить свои результаты в виде протокола, в котором в обязательном порядке должны быть указаны следующие сведения:

1. Наименование, тип и номер эталонов, используемых для измерения толщины образца и скорости распространения продольных ультразвуковых волн;

2. Климатические условия проведения измерений, температура образца (температура иммерсионной жидкости), погрешность (неопределенность) измерений температуры;

3. Краткое описание эталона, методика выполнения измерений скорости (времени) распространения продольных ультразвуковых волн и теоретическая расчетная формула определения скорости продольных ультразвуковых волн;

4. Модель измерений с подробным описанием всех входных величин;

5. Описание способа определения всех составляющих суммарной стандартной неопределенности измерений;

6. Результаты измерений толщины и времени (скорости) распространения продольных ультразвуковых волн для каждого образца до и после введения поправок;

7. Детальный бюджет неопределенности для каждого образца (отдельно для каждой частоты) с оценками составляющих неопределенности, значением скорости распространения продольных ультразвуковых волн и суммарной стандартной неопределенности измерений.

Перечень основных составляющих неопределенности измерений, которые должен оценить каждый участник сличения, приведен в таблице 3. Участники сличения в дополнение к ним могут добавить и другие составляющие, которые они считают существенными.

Источник стандартной неопределенности	Тип неопределенности
Измерения толщины образца	Α, Β
Измерения временных интервалов (частоты)	Α, Β
Температурная зависимость скорости продольных ультразвуковых волн	В
Дифракционные эффекты	В

Таблица 3 – Основные составляющие неопределенности

Протоколы измерений должны быть отправлены в пилот-лабораторию по почте не позднее одного месяца после окончания измерений в лаборатории. Предварительно, электронной почтой или факсом необходимо уведомить пилот-лабораторию о том, что результаты отправлены почтой. Результаты также должны быть отправлены электронной почтой. Если обнаружится аномальный результат, соответствующая лаборатория ставится об этом в известность в соответствии с руководящими принципами BIPM, и ей предоставляется возможность дать пояснения в течение 3-х недель.

7 Процедура оценки данных

Оценка данных результатов сличения должна быть выполнена в соответствии с Рекомендацией СООМЕТ R/GM/19:2016 «Руководство по оцениванию данных дополнительных сличений КООМЕТ», раздел 5, и Рекомендацией СООМЕТ R/GM/14:2016 «Руководство по оцениванию данных ключевых сличений СООМЕТ», раздел 5, с целью выбора наиболее оптимальной методики оценки данных сличений.

В соответствии с Рекомендацией R/GM/19:2016 производится проверка согласованности данных сличений по критерию χ^2 и определяется минимальная стандартная неопределенность, которая может быть заявлена в качестве СМС при подтверждении заявленных неопределенностей измерений.

В соответствии с Рекомендацией R/GM/14:2016 производится установление степени эквивалентности эталонов и подтверждение заявленных неопределенностей измерений.

Процедуры, изложенные в данных Руководствах, применимы для оценки данных пилотных сличений КООМЕТ, когда выполняются следующие условия:

- транспортируемый эталон является стабильным;

- каждый национальный институт, участвующий в пилотных сличениях, представляет результаты измерения и соответствующую суммарную стандартную неопределенность, а также бюджет неопределенности;

- распределение Гаусса может быть приписано измеряемой величине для каждого НМИ.

8 Финансы

Участники все свои расходы берут на себя, включая расходы на транспортировку эталонов сравнения.

9 График сличений

График проведения измерений участниками сличений приведен в таблице 4.

Таблица 4 – График сличений

НМИ	Период проведения измерений	
ДВФ ФГУП «ВНИИФТРИ»	с 1 сентября по 1 ноября 2018 г.	
БелГИМ	с 15 ноября 2018 г. по 15 января 2019 г.	
ГП «Укрметртестстандарт»	с 1 февраля по 1 апреля 2019 г.	
ГП «Днепрстандартметрология»	с 15 апреля по 15 июня 2019 г.	
NIM	с 1 июля по 1 сентября 2019 г.	
ДВФ ФГУП «ВНИИФТРИ»	с 15 сентября по 15 ноября 2019 г.	